MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgeqa Structured version   Visualization version   GIF version

Theorem itgeqa 23386
Description: Approximate equality of integrals. If 𝐶(𝑥) = 𝐷(𝑥) for almost all 𝑥, then 𝐵𝐶(𝑥) d𝑥 = ∫𝐵𝐷(𝑥) d𝑥 and one is integrable iff the other is. (Contributed by Mario Carneiro, 12-Aug-2014.) (Revised by Mario Carneiro, 2-Sep-2014.)
Hypotheses
Ref Expression
itgeqa.1 ((𝜑𝑥𝐵) → 𝐶 ∈ ℂ)
itgeqa.2 ((𝜑𝑥𝐵) → 𝐷 ∈ ℂ)
itgeqa.3 (𝜑𝐴 ⊆ ℝ)
itgeqa.4 (𝜑 → (vol*‘𝐴) = 0)
itgeqa.5 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 = 𝐷)
Assertion
Ref Expression
itgeqa (𝜑 → (((𝑥𝐵𝐶) ∈ 𝐿1 ↔ (𝑥𝐵𝐷) ∈ 𝐿1) ∧ ∫𝐵𝐶 d𝑥 = ∫𝐵𝐷 d𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem itgeqa
Dummy variables 𝑦 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgeqa.3 . . . . 5 (𝜑𝐴 ⊆ ℝ)
2 itgeqa.4 . . . . 5 (𝜑 → (vol*‘𝐴) = 0)
3 itgeqa.5 . . . . 5 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 = 𝐷)
4 itgeqa.1 . . . . 5 ((𝜑𝑥𝐵) → 𝐶 ∈ ℂ)
5 itgeqa.2 . . . . 5 ((𝜑𝑥𝐵) → 𝐷 ∈ ℂ)
61, 2, 3, 4, 5mbfeqa 23216 . . . 4 (𝜑 → ((𝑥𝐵𝐶) ∈ MblFn ↔ (𝑥𝐵𝐷) ∈ MblFn))
7 ifan 4084 . . . . . . . . . 10 if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)
84adantlr 747 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐵) → 𝐶 ∈ ℂ)
9 elfzelz 12213 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (0...3) → 𝑘 ∈ ℤ)
109ad2antlr 759 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐵) → 𝑘 ∈ ℤ)
11 ax-icn 9874 . . . . . . . . . . . . . . . . . 18 i ∈ ℂ
12 ine0 10344 . . . . . . . . . . . . . . . . . 18 i ≠ 0
13 expclz 12747 . . . . . . . . . . . . . . . . . 18 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ∈ ℂ)
1411, 12, 13mp3an12 1406 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℤ → (i↑𝑘) ∈ ℂ)
1510, 14syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐵) → (i↑𝑘) ∈ ℂ)
16 expne0i 12754 . . . . . . . . . . . . . . . . . 18 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ≠ 0)
1711, 12, 16mp3an12 1406 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℤ → (i↑𝑘) ≠ 0)
1810, 17syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐵) → (i↑𝑘) ≠ 0)
198, 15, 18divcld 10680 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐵) → (𝐶 / (i↑𝑘)) ∈ ℂ)
2019recld 13782 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐵) → (ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ)
21 0re 9919 . . . . . . . . . . . . . 14 0 ∈ ℝ
22 ifcl 4080 . . . . . . . . . . . . . 14 (((ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ ℝ)
2320, 21, 22sylancl 693 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐵) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ ℝ)
2423rexrd 9968 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐵) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ ℝ*)
25 max1 11890 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ (ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ) → 0 ≤ if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
2621, 20, 25sylancr 694 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐵) → 0 ≤ if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
27 elxrge0 12152 . . . . . . . . . . . 12 (if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ (0[,]+∞) ↔ (if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ ℝ* ∧ 0 ≤ if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
2824, 26, 27sylanbrc 695 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐵) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ (0[,]+∞))
29 0e0iccpnf 12154 . . . . . . . . . . . 12 0 ∈ (0[,]+∞)
3029a1i 11 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐵) → 0 ∈ (0[,]+∞))
3128, 30ifclda 4070 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...3)) → if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) ∈ (0[,]+∞))
327, 31syl5eqel 2692 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...3)) → if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ (0[,]+∞))
3332adantr 480 . . . . . . . 8 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ (0[,]+∞))
34 eqid 2610 . . . . . . . 8 (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
3533, 34fmptd 6292 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)):ℝ⟶(0[,]+∞))
36 ifan 4084 . . . . . . . . . 10 if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0) = if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐷 / (i↑𝑘))), (ℜ‘(𝐷 / (i↑𝑘))), 0), 0)
375adantlr 747 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐵) → 𝐷 ∈ ℂ)
3837, 15, 18divcld 10680 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐵) → (𝐷 / (i↑𝑘)) ∈ ℂ)
3938recld 13782 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐵) → (ℜ‘(𝐷 / (i↑𝑘))) ∈ ℝ)
40 ifcl 4080 . . . . . . . . . . . . . 14 (((ℜ‘(𝐷 / (i↑𝑘))) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ (ℜ‘(𝐷 / (i↑𝑘))), (ℜ‘(𝐷 / (i↑𝑘))), 0) ∈ ℝ)
4139, 21, 40sylancl 693 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐵) → if(0 ≤ (ℜ‘(𝐷 / (i↑𝑘))), (ℜ‘(𝐷 / (i↑𝑘))), 0) ∈ ℝ)
4241rexrd 9968 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐵) → if(0 ≤ (ℜ‘(𝐷 / (i↑𝑘))), (ℜ‘(𝐷 / (i↑𝑘))), 0) ∈ ℝ*)
43 max1 11890 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ (ℜ‘(𝐷 / (i↑𝑘))) ∈ ℝ) → 0 ≤ if(0 ≤ (ℜ‘(𝐷 / (i↑𝑘))), (ℜ‘(𝐷 / (i↑𝑘))), 0))
4421, 39, 43sylancr 694 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐵) → 0 ≤ if(0 ≤ (ℜ‘(𝐷 / (i↑𝑘))), (ℜ‘(𝐷 / (i↑𝑘))), 0))
45 elxrge0 12152 . . . . . . . . . . . 12 (if(0 ≤ (ℜ‘(𝐷 / (i↑𝑘))), (ℜ‘(𝐷 / (i↑𝑘))), 0) ∈ (0[,]+∞) ↔ (if(0 ≤ (ℜ‘(𝐷 / (i↑𝑘))), (ℜ‘(𝐷 / (i↑𝑘))), 0) ∈ ℝ* ∧ 0 ≤ if(0 ≤ (ℜ‘(𝐷 / (i↑𝑘))), (ℜ‘(𝐷 / (i↑𝑘))), 0)))
4642, 44, 45sylanbrc 695 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐵) → if(0 ≤ (ℜ‘(𝐷 / (i↑𝑘))), (ℜ‘(𝐷 / (i↑𝑘))), 0) ∈ (0[,]+∞))
4746, 30ifclda 4070 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...3)) → if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐷 / (i↑𝑘))), (ℜ‘(𝐷 / (i↑𝑘))), 0), 0) ∈ (0[,]+∞))
4836, 47syl5eqel 2692 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...3)) → if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0) ∈ (0[,]+∞))
4948adantr 480 . . . . . . . 8 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0) ∈ (0[,]+∞))
50 eqid 2610 . . . . . . . 8 (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))
5149, 50fmptd 6292 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0)):ℝ⟶(0[,]+∞))
521adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → 𝐴 ⊆ ℝ)
532adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → (vol*‘𝐴) = 0)
54 simpll 786 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) ∧ 𝑥𝐵) → 𝜑)
55 simpr 476 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) ∧ 𝑥𝐵) → 𝑥𝐵)
56 eldifn 3695 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (ℝ ∖ 𝐴) → ¬ 𝑥𝐴)
5756ad2antlr 759 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) ∧ 𝑥𝐵) → ¬ 𝑥𝐴)
5855, 57eldifd 3551 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) ∧ 𝑥𝐵) → 𝑥 ∈ (𝐵𝐴))
5954, 58, 3syl2anc 691 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) ∧ 𝑥𝐵) → 𝐶 = 𝐷)
6059oveq1d 6564 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) ∧ 𝑥𝐵) → (𝐶 / (i↑𝑘)) = (𝐷 / (i↑𝑘)))
6160fveq2d 6107 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) ∧ 𝑥𝐵) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐷 / (i↑𝑘))))
6261ibllem 23337 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))
63 eldifi 3694 . . . . . . . . . . . . . 14 (𝑥 ∈ (ℝ ∖ 𝐴) → 𝑥 ∈ ℝ)
6463adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → 𝑥 ∈ ℝ)
65 fvex 6113 . . . . . . . . . . . . . 14 (ℜ‘(𝐶 / (i↑𝑘))) ∈ V
66 c0ex 9913 . . . . . . . . . . . . . 14 0 ∈ V
6765, 66ifex 4106 . . . . . . . . . . . . 13 if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ V
6834fvmpt2 6200 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ V) → ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))‘𝑥) = if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
6964, 67, 68sylancl 693 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))‘𝑥) = if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
70 fvex 6113 . . . . . . . . . . . . . 14 (ℜ‘(𝐷 / (i↑𝑘))) ∈ V
7170, 66ifex 4106 . . . . . . . . . . . . 13 if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0) ∈ V
7250fvmpt2 6200 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0) ∈ V) → ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))‘𝑥) = if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))
7364, 71, 72sylancl 693 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))‘𝑥) = if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))
7462, 69, 733eqtr4d 2654 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))‘𝑥) = ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))‘𝑥))
7574ralrimiva 2949 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ (ℝ ∖ 𝐴)((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))‘𝑥) = ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))‘𝑥))
76 nfv 1830 . . . . . . . . . . 11 𝑦((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))‘𝑥) = ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))‘𝑥)
77 nffvmpt1 6111 . . . . . . . . . . . 12 𝑥((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))‘𝑦)
78 nffvmpt1 6111 . . . . . . . . . . . 12 𝑥((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))‘𝑦)
7977, 78nfeq 2762 . . . . . . . . . . 11 𝑥((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))‘𝑦) = ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))‘𝑦)
80 fveq2 6103 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))‘𝑥) = ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))‘𝑦))
81 fveq2 6103 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))‘𝑥) = ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))‘𝑦))
8280, 81eqeq12d 2625 . . . . . . . . . . 11 (𝑥 = 𝑦 → (((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))‘𝑥) = ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))‘𝑥) ↔ ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))‘𝑦) = ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))‘𝑦)))
8376, 79, 82cbvral 3143 . . . . . . . . . 10 (∀𝑥 ∈ (ℝ ∖ 𝐴)((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))‘𝑥) = ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))‘𝑥) ↔ ∀𝑦 ∈ (ℝ ∖ 𝐴)((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))‘𝑦) = ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))‘𝑦))
8475, 83sylib 207 . . . . . . . . 9 (𝜑 → ∀𝑦 ∈ (ℝ ∖ 𝐴)((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))‘𝑦) = ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))‘𝑦))
8584r19.21bi 2916 . . . . . . . 8 ((𝜑𝑦 ∈ (ℝ ∖ 𝐴)) → ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))‘𝑦) = ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))‘𝑦))
8685adantlr 747 . . . . . . 7 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑦 ∈ (ℝ ∖ 𝐴)) → ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))‘𝑦) = ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))‘𝑦))
8735, 51, 52, 53, 86itg2eqa 23318 . . . . . 6 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))))
8887eleq1d 2672 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ ↔ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))) ∈ ℝ))
8988ralbidva 2968 . . . 4 (𝜑 → (∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ ↔ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))) ∈ ℝ))
906, 89anbi12d 743 . . 3 (𝜑 → (((𝑥𝐵𝐶) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ) ↔ ((𝑥𝐵𝐷) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))) ∈ ℝ)))
91 eqidd 2611 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
92 eqidd 2611 . . . 4 ((𝜑𝑥𝐵) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘))))
9391, 92, 4isibl2 23339 . . 3 (𝜑 → ((𝑥𝐵𝐶) ∈ 𝐿1 ↔ ((𝑥𝐵𝐶) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)))
94 eqidd 2611 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0)))
95 eqidd 2611 . . . 4 ((𝜑𝑥𝐵) → (ℜ‘(𝐷 / (i↑𝑘))) = (ℜ‘(𝐷 / (i↑𝑘))))
9694, 95, 5isibl2 23339 . . 3 (𝜑 → ((𝑥𝐵𝐷) ∈ 𝐿1 ↔ ((𝑥𝐵𝐷) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))) ∈ ℝ)))
9790, 93, 963bitr4d 299 . 2 (𝜑 → ((𝑥𝐵𝐶) ∈ 𝐿1 ↔ (𝑥𝐵𝐷) ∈ 𝐿1))
9887oveq2d 6565 . . . 4 ((𝜑𝑘 ∈ (0...3)) → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) = ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0)))))
9998sumeq2dv 14281 . . 3 (𝜑 → Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0)))))
100 eqid 2610 . . . 4 (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘)))
101100dfitg 23342 . . 3 𝐵𝐶 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))
102 eqid 2610 . . . 4 (ℜ‘(𝐷 / (i↑𝑘))) = (ℜ‘(𝐷 / (i↑𝑘)))
103102dfitg 23342 . . 3 𝐵𝐷 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))))
10499, 101, 1033eqtr4g 2669 . 2 (𝜑 → ∫𝐵𝐶 d𝑥 = ∫𝐵𝐷 d𝑥)
10597, 104jca 553 1 (𝜑 → (((𝑥𝐵𝐶) ∈ 𝐿1 ↔ (𝑥𝐵𝐷) ∈ 𝐿1) ∧ ∫𝐵𝐶 d𝑥 = ∫𝐵𝐷 d𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  Vcvv 3173  cdif 3537  wss 3540  ifcif 4036   class class class wbr 4583  cmpt 4643  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  ici 9817   · cmul 9820  +∞cpnf 9950  *cxr 9952  cle 9954   / cdiv 10563  3c3 10948  cz 11254  [,]cicc 12049  ...cfz 12197  cexp 12722  cre 13685  Σcsu 14264  vol*covol 23038  MblFncmbf 23189  2citg2 23191  𝐿1cibl 23192  citg 23193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-rest 15906  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-cmp 21000  df-ovol 23040  df-vol 23041  df-mbf 23194  df-itg1 23195  df-itg2 23196  df-ibl 23197  df-itg 23198
This theorem is referenced by:  itgss3  23387
  Copyright terms: Public domain W3C validator