Step | Hyp | Ref
| Expression |
1 | | subrgsubg 18609 |
. . 3
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) |
2 | | issubrg2.o |
. . . 4
⊢ 1 =
(1r‘𝑅) |
3 | 2 | subrg1cl 18611 |
. . 3
⊢ (𝐴 ∈ (SubRing‘𝑅) → 1 ∈ 𝐴) |
4 | | issubrg2.t |
. . . . . 6
⊢ · =
(.r‘𝑅) |
5 | 4 | subrgmcl 18615 |
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 · 𝑦) ∈ 𝐴) |
6 | 5 | 3expb 1258 |
. . . 4
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 · 𝑦) ∈ 𝐴) |
7 | 6 | ralrimivva 2954 |
. . 3
⊢ (𝐴 ∈ (SubRing‘𝑅) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴) |
8 | 1, 3, 7 | 3jca 1235 |
. 2
⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) |
9 | | simpl 472 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝑅 ∈ Ring) |
10 | | simpr1 1060 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝐴 ∈ (SubGrp‘𝑅)) |
11 | | eqid 2610 |
. . . . . . . 8
⊢ (𝑅 ↾s 𝐴) = (𝑅 ↾s 𝐴) |
12 | 11 | subgbas 17421 |
. . . . . . 7
⊢ (𝐴 ∈ (SubGrp‘𝑅) → 𝐴 = (Base‘(𝑅 ↾s 𝐴))) |
13 | 10, 12 | syl 17 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝐴 = (Base‘(𝑅 ↾s 𝐴))) |
14 | | eqid 2610 |
. . . . . . . 8
⊢
(+g‘𝑅) = (+g‘𝑅) |
15 | 11, 14 | ressplusg 15818 |
. . . . . . 7
⊢ (𝐴 ∈ (SubGrp‘𝑅) →
(+g‘𝑅) =
(+g‘(𝑅
↾s 𝐴))) |
16 | 10, 15 | syl 17 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (+g‘𝑅) = (+g‘(𝑅 ↾s 𝐴))) |
17 | 11, 4 | ressmulr 15829 |
. . . . . . 7
⊢ (𝐴 ∈ (SubGrp‘𝑅) → · =
(.r‘(𝑅
↾s 𝐴))) |
18 | 10, 17 | syl 17 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → · =
(.r‘(𝑅
↾s 𝐴))) |
19 | 11 | subggrp 17420 |
. . . . . . 7
⊢ (𝐴 ∈ (SubGrp‘𝑅) → (𝑅 ↾s 𝐴) ∈ Grp) |
20 | 10, 19 | syl 17 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑅 ↾s 𝐴) ∈ Grp) |
21 | | simpr3 1062 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴) |
22 | | oveq1 6556 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑢 → (𝑥 · 𝑦) = (𝑢 · 𝑦)) |
23 | 22 | eleq1d 2672 |
. . . . . . . . 9
⊢ (𝑥 = 𝑢 → ((𝑥 · 𝑦) ∈ 𝐴 ↔ (𝑢 · 𝑦) ∈ 𝐴)) |
24 | | oveq2 6557 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑣 → (𝑢 · 𝑦) = (𝑢 · 𝑣)) |
25 | 24 | eleq1d 2672 |
. . . . . . . . 9
⊢ (𝑦 = 𝑣 → ((𝑢 · 𝑦) ∈ 𝐴 ↔ (𝑢 · 𝑣) ∈ 𝐴)) |
26 | 23, 25 | rspc2v 3293 |
. . . . . . . 8
⊢ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴 → (𝑢 · 𝑣) ∈ 𝐴)) |
27 | 21, 26 | syl5com 31 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) → (𝑢 · 𝑣) ∈ 𝐴)) |
28 | 27 | 3impib 1254 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) → (𝑢 · 𝑣) ∈ 𝐴) |
29 | | issubrg2.b |
. . . . . . . . . . . 12
⊢ 𝐵 = (Base‘𝑅) |
30 | 29 | subgss 17418 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ (SubGrp‘𝑅) → 𝐴 ⊆ 𝐵) |
31 | 10, 30 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝐴 ⊆ 𝐵) |
32 | 31 | sseld 3567 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑢 ∈ 𝐴 → 𝑢 ∈ 𝐵)) |
33 | 31 | sseld 3567 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑣 ∈ 𝐴 → 𝑣 ∈ 𝐵)) |
34 | 31 | sseld 3567 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑤 ∈ 𝐴 → 𝑤 ∈ 𝐵)) |
35 | 32, 33, 34 | 3anim123d 1398 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) → (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) |
36 | 35 | imp 444 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) |
37 | 29, 4 | ringass 18387 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑢 · 𝑣) · 𝑤) = (𝑢 · (𝑣 · 𝑤))) |
38 | 37 | adantlr 747 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑢 · 𝑣) · 𝑤) = (𝑢 · (𝑣 · 𝑤))) |
39 | 36, 38 | syldan 486 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → ((𝑢 · 𝑣) · 𝑤) = (𝑢 · (𝑣 · 𝑤))) |
40 | 29, 14, 4 | ringdi 18389 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑢 · (𝑣(+g‘𝑅)𝑤)) = ((𝑢 · 𝑣)(+g‘𝑅)(𝑢 · 𝑤))) |
41 | 40 | adantlr 747 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑢 · (𝑣(+g‘𝑅)𝑤)) = ((𝑢 · 𝑣)(+g‘𝑅)(𝑢 · 𝑤))) |
42 | 36, 41 | syldan 486 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (𝑢 · (𝑣(+g‘𝑅)𝑤)) = ((𝑢 · 𝑣)(+g‘𝑅)(𝑢 · 𝑤))) |
43 | 29, 14, 4 | ringdir 18390 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑢(+g‘𝑅)𝑣) · 𝑤) = ((𝑢 · 𝑤)(+g‘𝑅)(𝑣 · 𝑤))) |
44 | 43 | adantlr 747 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑢(+g‘𝑅)𝑣) · 𝑤) = ((𝑢 · 𝑤)(+g‘𝑅)(𝑣 · 𝑤))) |
45 | 36, 44 | syldan 486 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → ((𝑢(+g‘𝑅)𝑣) · 𝑤) = ((𝑢 · 𝑤)(+g‘𝑅)(𝑣 · 𝑤))) |
46 | | simpr2 1061 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 1 ∈ 𝐴) |
47 | 32 | imp 444 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ 𝑢 ∈ 𝐴) → 𝑢 ∈ 𝐵) |
48 | 29, 4, 2 | ringlidm 18394 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑢 ∈ 𝐵) → ( 1 · 𝑢) = 𝑢) |
49 | 48 | adantlr 747 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ 𝑢 ∈ 𝐵) → ( 1 · 𝑢) = 𝑢) |
50 | 47, 49 | syldan 486 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ 𝑢 ∈ 𝐴) → ( 1 · 𝑢) = 𝑢) |
51 | 29, 4, 2 | ringridm 18395 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑢 ∈ 𝐵) → (𝑢 · 1 ) = 𝑢) |
52 | 51 | adantlr 747 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ 𝑢 ∈ 𝐵) → (𝑢 · 1 ) = 𝑢) |
53 | 47, 52 | syldan 486 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ 𝑢 ∈ 𝐴) → (𝑢 · 1 ) = 𝑢) |
54 | 13, 16, 18, 20, 28, 39, 42, 45, 46, 50, 53 | isringd 18408 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑅 ↾s 𝐴) ∈ Ring) |
55 | 9, 54 | jca 553 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring)) |
56 | 31, 46 | jca 553 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴)) |
57 | 29, 2 | issubrg 18603 |
. . . 4
⊢ (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴))) |
58 | 55, 56, 57 | sylanbrc 695 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝐴 ∈ (SubRing‘𝑅)) |
59 | 58 | ex 449 |
. 2
⊢ (𝑅 ∈ Ring → ((𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴) → 𝐴 ∈ (SubRing‘𝑅))) |
60 | 8, 59 | impbid2 215 |
1
⊢ (𝑅 ∈ Ring → (𝐴 ∈ (SubRing‘𝑅) ↔ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴))) |