Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplsubrg Structured version   Visualization version   GIF version

Theorem mplsubrg 19261
 Description: The set of polynomials is closed under multiplication, i.e. it is a subring of the set of power series. (Contributed by Mario Carneiro, 9-Jan-2015.)
Hypotheses
Ref Expression
mplsubg.s 𝑆 = (𝐼 mPwSer 𝑅)
mplsubg.p 𝑃 = (𝐼 mPoly 𝑅)
mplsubg.u 𝑈 = (Base‘𝑃)
mplsubg.i (𝜑𝐼𝑊)
mpllss.r (𝜑𝑅 ∈ Ring)
Assertion
Ref Expression
mplsubrg (𝜑𝑈 ∈ (SubRing‘𝑆))

Proof of Theorem mplsubrg
Dummy variables 𝑘 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplsubg.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 mplsubg.p . . 3 𝑃 = (𝐼 mPoly 𝑅)
3 mplsubg.u . . 3 𝑈 = (Base‘𝑃)
4 mplsubg.i . . 3 (𝜑𝐼𝑊)
5 mpllss.r . . . 4 (𝜑𝑅 ∈ Ring)
6 ringgrp 18375 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
75, 6syl 17 . . 3 (𝜑𝑅 ∈ Grp)
81, 2, 3, 4, 7mplsubg 19258 . 2 (𝜑𝑈 ∈ (SubGrp‘𝑆))
91, 4, 5psrring 19232 . . . 4 (𝜑𝑆 ∈ Ring)
10 eqid 2610 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
11 eqid 2610 . . . . 5 (1r𝑆) = (1r𝑆)
1210, 11ringidcl 18391 . . . 4 (𝑆 ∈ Ring → (1r𝑆) ∈ (Base‘𝑆))
139, 12syl 17 . . 3 (𝜑 → (1r𝑆) ∈ (Base‘𝑆))
14 eqid 2610 . . . . 5 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
15 eqid 2610 . . . . 5 (0g𝑅) = (0g𝑅)
16 eqid 2610 . . . . 5 (1r𝑅) = (1r𝑅)
171, 4, 5, 14, 15, 16, 11psr1 19233 . . . 4 (𝜑 → (1r𝑆) = (𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅))))
18 ovex 6577 . . . . . . . 8 (ℕ0𝑚 𝐼) ∈ V
1918mptrabex 6392 . . . . . . 7 (𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅))) ∈ V
20 funmpt 5840 . . . . . . 7 Fun (𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅)))
21 fvex 6113 . . . . . . 7 (0g𝑅) ∈ V
2219, 20, 213pm3.2i 1232 . . . . . 6 ((𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅))) ∈ V ∧ Fun (𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅))) ∧ (0g𝑅) ∈ V)
2322a1i 11 . . . . 5 (𝜑 → ((𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅))) ∈ V ∧ Fun (𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅))) ∧ (0g𝑅) ∈ V))
24 snfi 7923 . . . . . 6 {(𝐼 × {0})} ∈ Fin
2524a1i 11 . . . . 5 (𝜑 → {(𝐼 × {0})} ∈ Fin)
26 eldifsni 4261 . . . . . . . 8 (𝑘 ∈ ({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ {(𝐼 × {0})}) → 𝑘 ≠ (𝐼 × {0}))
2726adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ ({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ {(𝐼 × {0})})) → 𝑘 ≠ (𝐼 × {0}))
28 ifnefalse 4048 . . . . . . 7 (𝑘 ≠ (𝐼 × {0}) → if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅)) = (0g𝑅))
2927, 28syl 17 . . . . . 6 ((𝜑𝑘 ∈ ({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ {(𝐼 × {0})})) → if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅)) = (0g𝑅))
3018rabex 4740 . . . . . . 7 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V
3130a1i 11 . . . . . 6 (𝜑 → {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V)
3229, 31suppss2 7216 . . . . 5 (𝜑 → ((𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅))) supp (0g𝑅)) ⊆ {(𝐼 × {0})})
33 suppssfifsupp 8173 . . . . 5 ((((𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅))) ∈ V ∧ Fun (𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅))) ∧ (0g𝑅) ∈ V) ∧ ({(𝐼 × {0})} ∈ Fin ∧ ((𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅))) supp (0g𝑅)) ⊆ {(𝐼 × {0})})) → (𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅))) finSupp (0g𝑅))
3423, 25, 32, 33syl12anc 1316 . . . 4 (𝜑 → (𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅))) finSupp (0g𝑅))
3517, 34eqbrtrd 4605 . . 3 (𝜑 → (1r𝑆) finSupp (0g𝑅))
362, 1, 10, 15, 3mplelbas 19251 . . 3 ((1r𝑆) ∈ 𝑈 ↔ ((1r𝑆) ∈ (Base‘𝑆) ∧ (1r𝑆) finSupp (0g𝑅)))
3713, 35, 36sylanbrc 695 . 2 (𝜑 → (1r𝑆) ∈ 𝑈)
384adantr 480 . . . 4 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝐼𝑊)
395adantr 480 . . . 4 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑅 ∈ Ring)
40 eqid 2610 . . . 4 ( ∘𝑓 + “ ((𝑥 supp (0g𝑅)) × (𝑦 supp (0g𝑅)))) = ( ∘𝑓 + “ ((𝑥 supp (0g𝑅)) × (𝑦 supp (0g𝑅))))
41 eqid 2610 . . . 4 (.r𝑅) = (.r𝑅)
42 simprl 790 . . . 4 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑥𝑈)
43 simprr 792 . . . 4 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑦𝑈)
441, 2, 3, 38, 39, 14, 15, 40, 41, 42, 43mplsubrglem 19260 . . 3 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (𝑥(.r𝑆)𝑦) ∈ 𝑈)
4544ralrimivva 2954 . 2 (𝜑 → ∀𝑥𝑈𝑦𝑈 (𝑥(.r𝑆)𝑦) ∈ 𝑈)
46 eqid 2610 . . . 4 (.r𝑆) = (.r𝑆)
4710, 11, 46issubrg2 18623 . . 3 (𝑆 ∈ Ring → (𝑈 ∈ (SubRing‘𝑆) ↔ (𝑈 ∈ (SubGrp‘𝑆) ∧ (1r𝑆) ∈ 𝑈 ∧ ∀𝑥𝑈𝑦𝑈 (𝑥(.r𝑆)𝑦) ∈ 𝑈)))
489, 47syl 17 . 2 (𝜑 → (𝑈 ∈ (SubRing‘𝑆) ↔ (𝑈 ∈ (SubGrp‘𝑆) ∧ (1r𝑆) ∈ 𝑈 ∧ ∀𝑥𝑈𝑦𝑈 (𝑥(.r𝑆)𝑦) ∈ 𝑈)))
498, 37, 45, 48mpbir3and 1238 1 (𝜑𝑈 ∈ (SubRing‘𝑆))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  {crab 2900  Vcvv 3173   ∖ cdif 3537   ⊆ wss 3540  ifcif 4036  {csn 4125   class class class wbr 4583   ↦ cmpt 4643   × cxp 5036  ◡ccnv 5037   “ cima 5041  Fun wfun 5798  ‘cfv 5804  (class class class)co 6549   ∘𝑓 cof 6793   supp csupp 7182   ↑𝑚 cmap 7744  Fincfn 7841   finSupp cfsupp 8158  0cc0 9815   + caddc 9818  ℕcn 10897  ℕ0cn0 11169  Basecbs 15695  .rcmulr 15769  0gc0g 15923  Grpcgrp 17245  SubGrpcsubg 17411  1rcur 18324  Ringcrg 18370  SubRingcsubrg 18599   mPwSer cmps 19172   mPoly cmpl 19174 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-tset 15787  df-0g 15925  df-gsum 15926  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-mulg 17364  df-subg 17414  df-ghm 17481  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-subrg 18601  df-psr 19177  df-mpl 19179 This theorem is referenced by:  mpl1  19265  mplring  19273  mplcrng  19274  mplassa  19275  subrgmpl  19281  mplbas2  19291  subrgasclcl  19320  mplind  19323  evlseu  19337  ply1subrg  19388
 Copyright terms: Public domain W3C validator