Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzdifsuc2 Structured version   Visualization version   GIF version

Theorem fzdifsuc2 38466
Description: Remove a successor from the end of a finite set of sequential integers. Similar to fzdifsuc 12270, but with a weaker condition. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Assertion
Ref Expression
fzdifsuc2 (𝑁 ∈ (ℤ‘(𝑀 − 1)) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))

Proof of Theorem fzdifsuc2
StepHypRef Expression
1 simpr 476 . . . . . 6 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → 𝑁 = (𝑀 − 1))
2 zre 11258 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
32ad2antlr 759 . . . . . . 7 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → 𝑀 ∈ ℝ)
43ltm1d 10835 . . . . . 6 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → (𝑀 − 1) < 𝑀)
51, 4eqbrtrd 4605 . . . . 5 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → 𝑁 < 𝑀)
6 simplr 788 . . . . . 6 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → 𝑀 ∈ ℤ)
7 eluzelz 11573 . . . . . . 7 (𝑁 ∈ (ℤ‘(𝑀 − 1)) → 𝑁 ∈ ℤ)
87ad2antrr 758 . . . . . 6 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → 𝑁 ∈ ℤ)
9 fzn 12228 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅))
106, 8, 9syl2anc 691 . . . . 5 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅))
115, 10mpbid 221 . . . 4 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → (𝑀...𝑁) = ∅)
12 difid 3902 . . . . . 6 ({𝑀} ∖ {𝑀}) = ∅
1312a1i 11 . . . . 5 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → ({𝑀} ∖ {𝑀}) = ∅)
1413eqcomd 2616 . . . 4 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → ∅ = ({𝑀} ∖ {𝑀}))
15 oveq1 6556 . . . . . . . . 9 (𝑁 = (𝑀 − 1) → (𝑁 + 1) = ((𝑀 − 1) + 1))
1615adantl 481 . . . . . . . 8 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → (𝑁 + 1) = ((𝑀 − 1) + 1))
172recnd 9947 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
1817ad2antlr 759 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → 𝑀 ∈ ℂ)
19 1cnd 9935 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → 1 ∈ ℂ)
2018, 19npcand 10275 . . . . . . . 8 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → ((𝑀 − 1) + 1) = 𝑀)
2116, 20eqtrd 2644 . . . . . . 7 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → (𝑁 + 1) = 𝑀)
2221oveq2d 6565 . . . . . 6 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → (𝑀...(𝑁 + 1)) = (𝑀...𝑀))
23 fzsn 12254 . . . . . . 7 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
2423ad2antlr 759 . . . . . 6 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → (𝑀...𝑀) = {𝑀})
2522, 24eqtr2d 2645 . . . . 5 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → {𝑀} = (𝑀...(𝑁 + 1)))
2621eqcomd 2616 . . . . . 6 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → 𝑀 = (𝑁 + 1))
2726sneqd 4137 . . . . 5 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → {𝑀} = {(𝑁 + 1)})
2825, 27difeq12d 3691 . . . 4 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → ({𝑀} ∖ {𝑀}) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
2911, 14, 283eqtrd 2648 . . 3 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ 𝑁 = (𝑀 − 1)) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
30 simplr 788 . . . . . 6 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → 𝑀 ∈ ℤ)
317ad2antrr 758 . . . . . 6 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → 𝑁 ∈ ℤ)
322ad2antlr 759 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → 𝑀 ∈ ℝ)
33 1red 9934 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → 1 ∈ ℝ)
3432, 33resubcld 10337 . . . . . . . 8 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → (𝑀 − 1) ∈ ℝ)
3531zred 11358 . . . . . . . 8 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → 𝑁 ∈ ℝ)
36 eluzle 11576 . . . . . . . . 9 (𝑁 ∈ (ℤ‘(𝑀 − 1)) → (𝑀 − 1) ≤ 𝑁)
3736ad2antrr 758 . . . . . . . 8 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → (𝑀 − 1) ≤ 𝑁)
38 neqne 2790 . . . . . . . . 9 𝑁 = (𝑀 − 1) → 𝑁 ≠ (𝑀 − 1))
3938adantl 481 . . . . . . . 8 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → 𝑁 ≠ (𝑀 − 1))
4034, 35, 37, 39leneltd 10070 . . . . . . 7 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → (𝑀 − 1) < 𝑁)
41 zlem1lt 11306 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀 − 1) < 𝑁))
4230, 31, 41syl2anc 691 . . . . . . 7 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → (𝑀𝑁 ↔ (𝑀 − 1) < 𝑁))
4340, 42mpbird 246 . . . . . 6 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → 𝑀𝑁)
4430, 31, 433jca 1235 . . . . 5 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
45 eluz2 11569 . . . . 5 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
4644, 45sylibr 223 . . . 4 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → 𝑁 ∈ (ℤ𝑀))
47 fzdifsuc 12270 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
4846, 47syl 17 . . 3 (((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) ∧ ¬ 𝑁 = (𝑀 − 1)) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
4929, 48pm2.61dan 828 . 2 ((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ 𝑀 ∈ ℤ) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
50 eluzel2 11568 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
5150con3i 149 . . . . . 6 𝑀 ∈ ℤ → ¬ 𝑁 ∈ (ℤ𝑀))
52 fzn0 12226 . . . . . 6 ((𝑀...𝑁) ≠ ∅ ↔ 𝑁 ∈ (ℤ𝑀))
5351, 52sylnibr 318 . . . . 5 𝑀 ∈ ℤ → ¬ (𝑀...𝑁) ≠ ∅)
54 nne 2786 . . . . 5 (¬ (𝑀...𝑁) ≠ ∅ ↔ (𝑀...𝑁) = ∅)
5553, 54sylib 207 . . . 4 𝑀 ∈ ℤ → (𝑀...𝑁) = ∅)
56 eluzel2 11568 . . . . . . . . 9 ((𝑁 + 1) ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
5756con3i 149 . . . . . . . 8 𝑀 ∈ ℤ → ¬ (𝑁 + 1) ∈ (ℤ𝑀))
58 fzn0 12226 . . . . . . . 8 ((𝑀...(𝑁 + 1)) ≠ ∅ ↔ (𝑁 + 1) ∈ (ℤ𝑀))
5957, 58sylnibr 318 . . . . . . 7 𝑀 ∈ ℤ → ¬ (𝑀...(𝑁 + 1)) ≠ ∅)
60 nne 2786 . . . . . . 7 (¬ (𝑀...(𝑁 + 1)) ≠ ∅ ↔ (𝑀...(𝑁 + 1)) = ∅)
6159, 60sylib 207 . . . . . 6 𝑀 ∈ ℤ → (𝑀...(𝑁 + 1)) = ∅)
6261difeq1d 3689 . . . . 5 𝑀 ∈ ℤ → ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}) = (∅ ∖ {(𝑁 + 1)}))
63 0dif 3929 . . . . . 6 (∅ ∖ {(𝑁 + 1)}) = ∅
6463a1i 11 . . . . 5 𝑀 ∈ ℤ → (∅ ∖ {(𝑁 + 1)}) = ∅)
6562, 64eqtr2d 2645 . . . 4 𝑀 ∈ ℤ → ∅ = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
6655, 65eqtrd 2644 . . 3 𝑀 ∈ ℤ → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
6766adantl 481 . 2 ((𝑁 ∈ (ℤ‘(𝑀 − 1)) ∧ ¬ 𝑀 ∈ ℤ) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
6849, 67pm2.61dan 828 1 (𝑁 ∈ (ℤ‘(𝑀 − 1)) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  cdif 3537  c0 3874  {csn 4125   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  1c1 9816   + caddc 9818   < clt 9953  cle 9954  cmin 10145  cz 11254  cuz 11563  ...cfz 12197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198
This theorem is referenced by:  dvnmul  38833
  Copyright terms: Public domain W3C validator