MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcres2c Structured version   Visualization version   GIF version

Theorem funcres2c 16384
Description: Condition for a functor to also be a functor into the restriction. (Contributed by Mario Carneiro, 30-Jan-2017.)
Hypotheses
Ref Expression
funcres2c.a 𝐴 = (Base‘𝐶)
funcres2c.e 𝐸 = (𝐷s 𝑆)
funcres2c.d (𝜑𝐷 ∈ Cat)
funcres2c.r (𝜑𝑆𝑉)
funcres2c.1 (𝜑𝐹:𝐴𝑆)
Assertion
Ref Expression
funcres2c (𝜑 → (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺))

Proof of Theorem funcres2c
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 orc 399 . . 3 (𝐹(𝐶 Func 𝐷)𝐺 → (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺))
21a1i 11 . 2 (𝜑 → (𝐹(𝐶 Func 𝐷)𝐺 → (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)))
3 olc 398 . . 3 (𝐹(𝐶 Func 𝐸)𝐺 → (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺))
43a1i 11 . 2 (𝜑 → (𝐹(𝐶 Func 𝐸)𝐺 → (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)))
5 funcres2c.a . . . . 5 𝐴 = (Base‘𝐶)
6 eqid 2610 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
7 eqid 2610 . . . . . . 7 (Base‘𝐷) = (Base‘𝐷)
8 eqid 2610 . . . . . . 7 (Homf𝐷) = (Homf𝐷)
9 funcres2c.d . . . . . . 7 (𝜑𝐷 ∈ Cat)
10 inss2 3796 . . . . . . . 8 (𝑆 ∩ (Base‘𝐷)) ⊆ (Base‘𝐷)
1110a1i 11 . . . . . . 7 (𝜑 → (𝑆 ∩ (Base‘𝐷)) ⊆ (Base‘𝐷))
127, 8, 9, 11fullsubc 16333 . . . . . 6 (𝜑 → ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))) ∈ (Subcat‘𝐷))
1312adantr 480 . . . . 5 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))) ∈ (Subcat‘𝐷))
148, 7homffn 16176 . . . . . . 7 (Homf𝐷) Fn ((Base‘𝐷) × (Base‘𝐷))
15 xpss12 5148 . . . . . . . 8 (((𝑆 ∩ (Base‘𝐷)) ⊆ (Base‘𝐷) ∧ (𝑆 ∩ (Base‘𝐷)) ⊆ (Base‘𝐷)) → ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))) ⊆ ((Base‘𝐷) × (Base‘𝐷)))
1610, 10, 15mp2an 704 . . . . . . 7 ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))) ⊆ ((Base‘𝐷) × (Base‘𝐷))
17 fnssres 5918 . . . . . . 7 (((Homf𝐷) Fn ((Base‘𝐷) × (Base‘𝐷)) ∧ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))) ⊆ ((Base‘𝐷) × (Base‘𝐷))) → ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))) Fn ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))
1814, 16, 17mp2an 704 . . . . . 6 ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))) Fn ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))
1918a1i 11 . . . . 5 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))) Fn ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))
20 funcres2c.1 . . . . . . . 8 (𝜑𝐹:𝐴𝑆)
2120adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → 𝐹:𝐴𝑆)
22 ffn 5958 . . . . . . 7 (𝐹:𝐴𝑆𝐹 Fn 𝐴)
2321, 22syl 17 . . . . . 6 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → 𝐹 Fn 𝐴)
24 frn 5966 . . . . . . . 8 (𝐹:𝐴𝑆 → ran 𝐹𝑆)
2521, 24syl 17 . . . . . . 7 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → ran 𝐹𝑆)
26 simpr 476 . . . . . . . . . 10 ((𝜑𝐹(𝐶 Func 𝐷)𝐺) → 𝐹(𝐶 Func 𝐷)𝐺)
275, 7, 26funcf1 16349 . . . . . . . . 9 ((𝜑𝐹(𝐶 Func 𝐷)𝐺) → 𝐹:𝐴⟶(Base‘𝐷))
28 frn 5966 . . . . . . . . 9 (𝐹:𝐴⟶(Base‘𝐷) → ran 𝐹 ⊆ (Base‘𝐷))
2927, 28syl 17 . . . . . . . 8 ((𝜑𝐹(𝐶 Func 𝐷)𝐺) → ran 𝐹 ⊆ (Base‘𝐷))
30 eqid 2610 . . . . . . . . . . 11 (Base‘𝐸) = (Base‘𝐸)
31 simpr 476 . . . . . . . . . . 11 ((𝜑𝐹(𝐶 Func 𝐸)𝐺) → 𝐹(𝐶 Func 𝐸)𝐺)
325, 30, 31funcf1 16349 . . . . . . . . . 10 ((𝜑𝐹(𝐶 Func 𝐸)𝐺) → 𝐹:𝐴⟶(Base‘𝐸))
33 frn 5966 . . . . . . . . . 10 (𝐹:𝐴⟶(Base‘𝐸) → ran 𝐹 ⊆ (Base‘𝐸))
3432, 33syl 17 . . . . . . . . 9 ((𝜑𝐹(𝐶 Func 𝐸)𝐺) → ran 𝐹 ⊆ (Base‘𝐸))
35 funcres2c.e . . . . . . . . . 10 𝐸 = (𝐷s 𝑆)
3635, 7ressbasss 15759 . . . . . . . . 9 (Base‘𝐸) ⊆ (Base‘𝐷)
3734, 36syl6ss 3580 . . . . . . . 8 ((𝜑𝐹(𝐶 Func 𝐸)𝐺) → ran 𝐹 ⊆ (Base‘𝐷))
3829, 37jaodan 822 . . . . . . 7 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → ran 𝐹 ⊆ (Base‘𝐷))
3925, 38ssind 3799 . . . . . 6 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → ran 𝐹 ⊆ (𝑆 ∩ (Base‘𝐷)))
40 df-f 5808 . . . . . 6 (𝐹:𝐴⟶(𝑆 ∩ (Base‘𝐷)) ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ (𝑆 ∩ (Base‘𝐷))))
4123, 39, 40sylanbrc 695 . . . . 5 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → 𝐹:𝐴⟶(𝑆 ∩ (Base‘𝐷)))
42 eqid 2610 . . . . . . . . 9 (Hom ‘𝐷) = (Hom ‘𝐷)
43 simpr 476 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝐹(𝐶 Func 𝐷)𝐺) → 𝐹(𝐶 Func 𝐷)𝐺)
44 simplrl 796 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝐹(𝐶 Func 𝐷)𝐺) → 𝑥𝐴)
45 simplrr 797 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝐹(𝐶 Func 𝐷)𝐺) → 𝑦𝐴)
465, 6, 42, 43, 44, 45funcf2 16351 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝐹(𝐶 Func 𝐷)𝐺) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)))
47 eqid 2610 . . . . . . . . . 10 (Hom ‘𝐸) = (Hom ‘𝐸)
48 simpr 476 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝐹(𝐶 Func 𝐸)𝐺) → 𝐹(𝐶 Func 𝐸)𝐺)
49 simplrl 796 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝐹(𝐶 Func 𝐸)𝐺) → 𝑥𝐴)
50 simplrr 797 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝐹(𝐶 Func 𝐸)𝐺) → 𝑦𝐴)
515, 6, 47, 48, 49, 50funcf2 16351 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝐹(𝐶 Func 𝐸)𝐺) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹𝑥)(Hom ‘𝐸)(𝐹𝑦)))
52 funcres2c.r . . . . . . . . . . . . 13 (𝜑𝑆𝑉)
5335, 42resshom 15901 . . . . . . . . . . . . 13 (𝑆𝑉 → (Hom ‘𝐷) = (Hom ‘𝐸))
5452, 53syl 17 . . . . . . . . . . . 12 (𝜑 → (Hom ‘𝐷) = (Hom ‘𝐸))
5554ad2antrr 758 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝐹(𝐶 Func 𝐸)𝐺) → (Hom ‘𝐷) = (Hom ‘𝐸))
5655oveqd 6566 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝐹(𝐶 Func 𝐸)𝐺) → ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) = ((𝐹𝑥)(Hom ‘𝐸)(𝐹𝑦)))
5756feq3d 5945 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝐹(𝐶 Func 𝐸)𝐺) → ((𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) ↔ (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹𝑥)(Hom ‘𝐸)(𝐹𝑦))))
5851, 57mpbird 246 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝐹(𝐶 Func 𝐸)𝐺) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)))
5946, 58jaodan 822 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)))
6059an32s 842 . . . . . 6 (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)))
6141adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥𝐴𝑦𝐴)) → 𝐹:𝐴⟶(𝑆 ∩ (Base‘𝐷)))
62 simprl 790 . . . . . . . . . 10 (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥𝐴𝑦𝐴)) → 𝑥𝐴)
6361, 62ffvelrnd 6268 . . . . . . . . 9 (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥𝐴𝑦𝐴)) → (𝐹𝑥) ∈ (𝑆 ∩ (Base‘𝐷)))
64 simprr 792 . . . . . . . . . 10 (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥𝐴𝑦𝐴)) → 𝑦𝐴)
6561, 64ffvelrnd 6268 . . . . . . . . 9 (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥𝐴𝑦𝐴)) → (𝐹𝑦) ∈ (𝑆 ∩ (Base‘𝐷)))
6663, 65ovresd 6699 . . . . . . . 8 (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥𝐴𝑦𝐴)) → ((𝐹𝑥)((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))(𝐹𝑦)) = ((𝐹𝑥)(Homf𝐷)(𝐹𝑦)))
6710, 63sseldi 3566 . . . . . . . . 9 (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥𝐴𝑦𝐴)) → (𝐹𝑥) ∈ (Base‘𝐷))
6810, 65sseldi 3566 . . . . . . . . 9 (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥𝐴𝑦𝐴)) → (𝐹𝑦) ∈ (Base‘𝐷))
698, 7, 42, 67, 68homfval 16175 . . . . . . . 8 (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥𝐴𝑦𝐴)) → ((𝐹𝑥)(Homf𝐷)(𝐹𝑦)) = ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)))
7066, 69eqtrd 2644 . . . . . . 7 (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥𝐴𝑦𝐴)) → ((𝐹𝑥)((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))(𝐹𝑦)) = ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)))
7170feq3d 5945 . . . . . 6 (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹𝑥)((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))(𝐹𝑦)) ↔ (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦))))
7260, 71mpbird 246 . . . . 5 (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹𝑥)((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))(𝐹𝑦)))
735, 6, 13, 19, 41, 72funcres2b 16380 . . . 4 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func (𝐷cat ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))))𝐺))
74 eqidd 2611 . . . . . 6 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → (Homf𝐶) = (Homf𝐶))
75 eqidd 2611 . . . . . 6 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → (compf𝐶) = (compf𝐶))
767ressinbas 15763 . . . . . . . . . . 11 (𝑆𝑉 → (𝐷s 𝑆) = (𝐷s (𝑆 ∩ (Base‘𝐷))))
7752, 76syl 17 . . . . . . . . . 10 (𝜑 → (𝐷s 𝑆) = (𝐷s (𝑆 ∩ (Base‘𝐷))))
7835, 77syl5eq 2656 . . . . . . . . 9 (𝜑𝐸 = (𝐷s (𝑆 ∩ (Base‘𝐷))))
7978fveq2d 6107 . . . . . . . 8 (𝜑 → (Homf𝐸) = (Homf ‘(𝐷s (𝑆 ∩ (Base‘𝐷)))))
80 eqid 2610 . . . . . . . . . 10 (𝐷s (𝑆 ∩ (Base‘𝐷))) = (𝐷s (𝑆 ∩ (Base‘𝐷)))
81 eqid 2610 . . . . . . . . . 10 (𝐷cat ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))) = (𝐷cat ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))))
827, 8, 9, 11, 80, 81fullresc 16334 . . . . . . . . 9 (𝜑 → ((Homf ‘(𝐷s (𝑆 ∩ (Base‘𝐷)))) = (Homf ‘(𝐷cat ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))))) ∧ (compf‘(𝐷s (𝑆 ∩ (Base‘𝐷)))) = (compf‘(𝐷cat ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))))))
8382simpld 474 . . . . . . . 8 (𝜑 → (Homf ‘(𝐷s (𝑆 ∩ (Base‘𝐷)))) = (Homf ‘(𝐷cat ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))))))
8479, 83eqtrd 2644 . . . . . . 7 (𝜑 → (Homf𝐸) = (Homf ‘(𝐷cat ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))))))
8584adantr 480 . . . . . 6 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → (Homf𝐸) = (Homf ‘(𝐷cat ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))))))
8678fveq2d 6107 . . . . . . . 8 (𝜑 → (compf𝐸) = (compf‘(𝐷s (𝑆 ∩ (Base‘𝐷)))))
8782simprd 478 . . . . . . . 8 (𝜑 → (compf‘(𝐷s (𝑆 ∩ (Base‘𝐷)))) = (compf‘(𝐷cat ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))))))
8886, 87eqtrd 2644 . . . . . . 7 (𝜑 → (compf𝐸) = (compf‘(𝐷cat ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))))))
8988adantr 480 . . . . . 6 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → (compf𝐸) = (compf‘(𝐷cat ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))))))
90 df-br 4584 . . . . . . . . . . 11 (𝐹(𝐶 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
91 funcrcl 16346 . . . . . . . . . . 11 (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
9290, 91sylbi 206 . . . . . . . . . 10 (𝐹(𝐶 Func 𝐷)𝐺 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
9392simpld 474 . . . . . . . . 9 (𝐹(𝐶 Func 𝐷)𝐺𝐶 ∈ Cat)
94 df-br 4584 . . . . . . . . . . 11 (𝐹(𝐶 Func 𝐸)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐸))
95 funcrcl 16346 . . . . . . . . . . 11 (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐸) → (𝐶 ∈ Cat ∧ 𝐸 ∈ Cat))
9694, 95sylbi 206 . . . . . . . . . 10 (𝐹(𝐶 Func 𝐸)𝐺 → (𝐶 ∈ Cat ∧ 𝐸 ∈ Cat))
9796simpld 474 . . . . . . . . 9 (𝐹(𝐶 Func 𝐸)𝐺𝐶 ∈ Cat)
9893, 97jaoi 393 . . . . . . . 8 ((𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺) → 𝐶 ∈ Cat)
99 elex 3185 . . . . . . . 8 (𝐶 ∈ Cat → 𝐶 ∈ V)
10098, 99syl 17 . . . . . . 7 ((𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺) → 𝐶 ∈ V)
101100adantl 481 . . . . . 6 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → 𝐶 ∈ V)
102 ovex 6577 . . . . . . . 8 (𝐷s 𝑆) ∈ V
10335, 102eqeltri 2684 . . . . . . 7 𝐸 ∈ V
104103a1i 11 . . . . . 6 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → 𝐸 ∈ V)
105 ovex 6577 . . . . . . 7 (𝐷cat ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))) ∈ V
106105a1i 11 . . . . . 6 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → (𝐷cat ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))) ∈ V)
10774, 75, 85, 89, 101, 101, 104, 106funcpropd 16383 . . . . 5 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → (𝐶 Func 𝐸) = (𝐶 Func (𝐷cat ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))))))
108107breqd 4594 . . . 4 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → (𝐹(𝐶 Func 𝐸)𝐺𝐹(𝐶 Func (𝐷cat ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))))𝐺))
10973, 108bitr4d 270 . . 3 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺))
110109ex 449 . 2 (𝜑 → ((𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺) → (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)))
1112, 4, 110pm5.21ndd 368 1 (𝜑 → (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  cin 3539  wss 3540  cop 4131   class class class wbr 4583   × cxp 5036  ran crn 5039  cres 5040   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  Basecbs 15695  s cress 15696  Hom chom 15779  Catccat 16148  Homf chomf 16150  compfccomf 16151  cat cresc 16291  Subcatcsubc 16292   Func cfunc 16337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-hom 15793  df-cco 15794  df-cat 16152  df-cid 16153  df-homf 16154  df-comf 16155  df-ssc 16293  df-resc 16294  df-subc 16295  df-func 16341
This theorem is referenced by:  fthres2c  16414  fullres2c  16422
  Copyright terms: Public domain W3C validator