MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fullresc Structured version   Visualization version   GIF version

Theorem fullresc 16334
Description: The category formed by structure restriction is the same as the category restriction. (Contributed by Mario Carneiro, 5-Jan-2017.)
Hypotheses
Ref Expression
fullsubc.b 𝐵 = (Base‘𝐶)
fullsubc.h 𝐻 = (Homf𝐶)
fullsubc.c (𝜑𝐶 ∈ Cat)
fullsubc.s (𝜑𝑆𝐵)
fullsubc.d 𝐷 = (𝐶s 𝑆)
fullsubc.e 𝐸 = (𝐶cat (𝐻 ↾ (𝑆 × 𝑆)))
Assertion
Ref Expression
fullresc (𝜑 → ((Homf𝐷) = (Homf𝐸) ∧ (compf𝐷) = (compf𝐸)))

Proof of Theorem fullresc
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fullsubc.h . . . . . 6 𝐻 = (Homf𝐶)
2 fullsubc.b . . . . . 6 𝐵 = (Base‘𝐶)
3 eqid 2610 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
4 fullsubc.s . . . . . . . 8 (𝜑𝑆𝐵)
54adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝑆𝐵)
6 simprl 790 . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝑥𝑆)
75, 6sseldd 3569 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝑥𝐵)
8 simprr 792 . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝑦𝑆)
95, 8sseldd 3569 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝑦𝐵)
101, 2, 3, 7, 9homfval 16175 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐻𝑦) = (𝑥(Hom ‘𝐶)𝑦))
116, 8ovresd 6699 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦) = (𝑥𝐻𝑦))
12 fullsubc.e . . . . . . . 8 𝐸 = (𝐶cat (𝐻 ↾ (𝑆 × 𝑆)))
13 fullsubc.c . . . . . . . 8 (𝜑𝐶 ∈ Cat)
141, 2homffn 16176 . . . . . . . . 9 𝐻 Fn (𝐵 × 𝐵)
15 xpss12 5148 . . . . . . . . . 10 ((𝑆𝐵𝑆𝐵) → (𝑆 × 𝑆) ⊆ (𝐵 × 𝐵))
164, 4, 15syl2anc 691 . . . . . . . . 9 (𝜑 → (𝑆 × 𝑆) ⊆ (𝐵 × 𝐵))
17 fnssres 5918 . . . . . . . . 9 ((𝐻 Fn (𝐵 × 𝐵) ∧ (𝑆 × 𝑆) ⊆ (𝐵 × 𝐵)) → (𝐻 ↾ (𝑆 × 𝑆)) Fn (𝑆 × 𝑆))
1814, 16, 17sylancr 694 . . . . . . . 8 (𝜑 → (𝐻 ↾ (𝑆 × 𝑆)) Fn (𝑆 × 𝑆))
1912, 2, 13, 18, 4reschom 16313 . . . . . . 7 (𝜑 → (𝐻 ↾ (𝑆 × 𝑆)) = (Hom ‘𝐸))
2019oveqdr 6573 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦) = (𝑥(Hom ‘𝐸)𝑦))
2111, 20eqtr3d 2646 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐻𝑦) = (𝑥(Hom ‘𝐸)𝑦))
22 fullsubc.d . . . . . . . . . 10 𝐷 = (𝐶s 𝑆)
2322, 2ressbas2 15758 . . . . . . . . 9 (𝑆𝐵𝑆 = (Base‘𝐷))
244, 23syl 17 . . . . . . . 8 (𝜑𝑆 = (Base‘𝐷))
25 fvex 6113 . . . . . . . 8 (Base‘𝐷) ∈ V
2624, 25syl6eqel 2696 . . . . . . 7 (𝜑𝑆 ∈ V)
2722, 3resshom 15901 . . . . . . 7 (𝑆 ∈ V → (Hom ‘𝐶) = (Hom ‘𝐷))
2826, 27syl 17 . . . . . 6 (𝜑 → (Hom ‘𝐶) = (Hom ‘𝐷))
2928oveqdr 6573 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘𝐷)𝑦))
3010, 21, 293eqtr3rd 2653 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(Hom ‘𝐷)𝑦) = (𝑥(Hom ‘𝐸)𝑦))
3130ralrimivva 2954 . . 3 (𝜑 → ∀𝑥𝑆𝑦𝑆 (𝑥(Hom ‘𝐷)𝑦) = (𝑥(Hom ‘𝐸)𝑦))
32 eqid 2610 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
33 eqid 2610 . . . 4 (Hom ‘𝐸) = (Hom ‘𝐸)
3412, 2, 13, 18, 4rescbas 16312 . . . 4 (𝜑𝑆 = (Base‘𝐸))
3532, 33, 24, 34homfeq 16177 . . 3 (𝜑 → ((Homf𝐷) = (Homf𝐸) ↔ ∀𝑥𝑆𝑦𝑆 (𝑥(Hom ‘𝐷)𝑦) = (𝑥(Hom ‘𝐸)𝑦)))
3631, 35mpbird 246 . 2 (𝜑 → (Homf𝐷) = (Homf𝐸))
37 eqid 2610 . . . . . 6 (comp‘𝐶) = (comp‘𝐶)
3822, 37ressco 15902 . . . . 5 (𝑆 ∈ V → (comp‘𝐶) = (comp‘𝐷))
3926, 38syl 17 . . . 4 (𝜑 → (comp‘𝐶) = (comp‘𝐷))
4012, 2, 13, 18, 4, 37rescco 16315 . . . 4 (𝜑 → (comp‘𝐶) = (comp‘𝐸))
4139, 40eqtr3d 2646 . . 3 (𝜑 → (comp‘𝐷) = (comp‘𝐸))
4241, 36comfeqd 16190 . 2 (𝜑 → (compf𝐷) = (compf𝐸))
4336, 42jca 553 1 (𝜑 → ((Homf𝐷) = (Homf𝐸) ∧ (compf𝐷) = (compf𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  wss 3540   × cxp 5036  cres 5040   Fn wfn 5799  cfv 5804  (class class class)co 6549  Basecbs 15695  s cress 15696  Hom chom 15779  compcco 15780  Catccat 16148  Homf chomf 16150  compfccomf 16151  cat cresc 16291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-hom 15793  df-cco 15794  df-homf 16154  df-comf 16155  df-resc 16294
This theorem is referenced by:  resscat  16335  funcres2c  16384  ressffth  16421  funcsetcres2  16566
  Copyright terms: Public domain W3C validator