MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmplusgval Structured version   Visualization version   GIF version

Theorem frlmplusgval 19926
Description: Addition in a free module. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
frlmplusgval.y 𝑌 = (𝑅 freeLMod 𝐼)
frlmplusgval.b 𝐵 = (Base‘𝑌)
frlmplusgval.r (𝜑𝑅𝑉)
frlmplusgval.i (𝜑𝐼𝑊)
frlmplusgval.f (𝜑𝐹𝐵)
frlmplusgval.g (𝜑𝐺𝐵)
frlmplusgval.a + = (+g𝑅)
frlmplusgval.p = (+g𝑌)
Assertion
Ref Expression
frlmplusgval (𝜑 → (𝐹 𝐺) = (𝐹𝑓 + 𝐺))

Proof of Theorem frlmplusgval
StepHypRef Expression
1 frlmplusgval.r . . . . . 6 (𝜑𝑅𝑉)
2 frlmplusgval.i . . . . . 6 (𝜑𝐼𝑊)
3 frlmplusgval.y . . . . . . 7 𝑌 = (𝑅 freeLMod 𝐼)
4 eqid 2610 . . . . . . 7 (Base‘𝑌) = (Base‘𝑌)
53, 4frlmpws 19913 . . . . . 6 ((𝑅𝑉𝐼𝑊) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌)))
61, 2, 5syl2anc 691 . . . . 5 (𝜑𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌)))
76fveq2d 6107 . . . 4 (𝜑 → (+g𝑌) = (+g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌))))
8 frlmplusgval.p . . . 4 = (+g𝑌)
9 fvex 6113 . . . . 5 (Base‘𝑌) ∈ V
10 eqid 2610 . . . . . 6 (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌)) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌))
11 eqid 2610 . . . . . 6 (+g‘((ringLMod‘𝑅) ↑s 𝐼)) = (+g‘((ringLMod‘𝑅) ↑s 𝐼))
1210, 11ressplusg 15818 . . . . 5 ((Base‘𝑌) ∈ V → (+g‘((ringLMod‘𝑅) ↑s 𝐼)) = (+g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌))))
139, 12ax-mp 5 . . . 4 (+g‘((ringLMod‘𝑅) ↑s 𝐼)) = (+g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌)))
147, 8, 133eqtr4g 2669 . . 3 (𝜑 = (+g‘((ringLMod‘𝑅) ↑s 𝐼)))
1514oveqd 6566 . 2 (𝜑 → (𝐹 𝐺) = (𝐹(+g‘((ringLMod‘𝑅) ↑s 𝐼))𝐺))
16 eqid 2610 . . 3 ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼)
17 eqid 2610 . . 3 (Base‘((ringLMod‘𝑅) ↑s 𝐼)) = (Base‘((ringLMod‘𝑅) ↑s 𝐼))
18 fvex 6113 . . . 4 (ringLMod‘𝑅) ∈ V
1918a1i 11 . . 3 (𝜑 → (ringLMod‘𝑅) ∈ V)
20 frlmplusgval.b . . . . . 6 𝐵 = (Base‘𝑌)
213, 20frlmpws 19913 . . . . . . . 8 ((𝑅𝑉𝐼𝑊) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))
221, 2, 21syl2anc 691 . . . . . . 7 (𝜑𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))
2322fveq2d 6107 . . . . . 6 (𝜑 → (Base‘𝑌) = (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)))
2420, 23syl5eq 2656 . . . . 5 (𝜑𝐵 = (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)))
25 eqid 2610 . . . . . 6 (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)
2625, 17ressbasss 15759 . . . . 5 (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝐼))
2724, 26syl6eqss 3618 . . . 4 (𝜑𝐵 ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
28 frlmplusgval.f . . . 4 (𝜑𝐹𝐵)
2927, 28sseldd 3569 . . 3 (𝜑𝐹 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
30 frlmplusgval.g . . . 4 (𝜑𝐺𝐵)
3127, 30sseldd 3569 . . 3 (𝜑𝐺 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
32 frlmplusgval.a . . . 4 + = (+g𝑅)
33 rlmplusg 19017 . . . 4 (+g𝑅) = (+g‘(ringLMod‘𝑅))
3432, 33eqtri 2632 . . 3 + = (+g‘(ringLMod‘𝑅))
3516, 17, 19, 2, 29, 31, 34, 11pwsplusgval 15973 . 2 (𝜑 → (𝐹(+g‘((ringLMod‘𝑅) ↑s 𝐼))𝐺) = (𝐹𝑓 + 𝐺))
3615, 35eqtrd 2644 1 (𝜑 → (𝐹 𝐺) = (𝐹𝑓 + 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  Vcvv 3173  cfv 5804  (class class class)co 6549  𝑓 cof 6793  Basecbs 15695  s cress 15696  +gcplusg 15768  s cpws 15930  ringLModcrglmod 18990   freeLMod cfrlm 19909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-hom 15793  df-cco 15794  df-prds 15931  df-pws 15933  df-sra 18993  df-rgmod 18994  df-dsmm 19895  df-frlm 19910
This theorem is referenced by:  frlmphl  19939  frlmup1  19956  matplusg2  20052  zlmodzxzadd  41929
  Copyright terms: Public domain W3C validator