MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmup1 Structured version   Visualization version   GIF version

Theorem frlmup1 19956
Description: Any assignment of unit vectors to target vectors can be extended (uniquely) to a homomorphism from a free module to an arbitrary other module on the same base ring. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.)
Hypotheses
Ref Expression
frlmup.f 𝐹 = (𝑅 freeLMod 𝐼)
frlmup.b 𝐵 = (Base‘𝐹)
frlmup.c 𝐶 = (Base‘𝑇)
frlmup.v · = ( ·𝑠𝑇)
frlmup.e 𝐸 = (𝑥𝐵 ↦ (𝑇 Σg (𝑥𝑓 · 𝐴)))
frlmup.t (𝜑𝑇 ∈ LMod)
frlmup.i (𝜑𝐼𝑋)
frlmup.r (𝜑𝑅 = (Scalar‘𝑇))
frlmup.a (𝜑𝐴:𝐼𝐶)
Assertion
Ref Expression
frlmup1 (𝜑𝐸 ∈ (𝐹 LMHom 𝑇))
Distinct variable groups:   𝑥,𝑅   𝑥,𝐼   𝑥,𝐹   𝑥,𝐵   𝑥,𝐶   𝑥, ·   𝑥,𝐴   𝑥,𝑋   𝜑,𝑥   𝑥,𝑇
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem frlmup1
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frlmup.b . 2 𝐵 = (Base‘𝐹)
2 eqid 2610 . 2 ( ·𝑠𝐹) = ( ·𝑠𝐹)
3 frlmup.v . 2 · = ( ·𝑠𝑇)
4 eqid 2610 . 2 (Scalar‘𝐹) = (Scalar‘𝐹)
5 eqid 2610 . 2 (Scalar‘𝑇) = (Scalar‘𝑇)
6 eqid 2610 . 2 (Base‘(Scalar‘𝐹)) = (Base‘(Scalar‘𝐹))
7 frlmup.r . . . 4 (𝜑𝑅 = (Scalar‘𝑇))
8 frlmup.t . . . . 5 (𝜑𝑇 ∈ LMod)
95lmodring 18694 . . . . 5 (𝑇 ∈ LMod → (Scalar‘𝑇) ∈ Ring)
108, 9syl 17 . . . 4 (𝜑 → (Scalar‘𝑇) ∈ Ring)
117, 10eqeltrd 2688 . . 3 (𝜑𝑅 ∈ Ring)
12 frlmup.i . . 3 (𝜑𝐼𝑋)
13 frlmup.f . . . 4 𝐹 = (𝑅 freeLMod 𝐼)
1413frlmlmod 19912 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑋) → 𝐹 ∈ LMod)
1511, 12, 14syl2anc 691 . 2 (𝜑𝐹 ∈ LMod)
1613frlmsca 19916 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑋) → 𝑅 = (Scalar‘𝐹))
1711, 12, 16syl2anc 691 . . 3 (𝜑𝑅 = (Scalar‘𝐹))
187, 17eqtr3d 2646 . 2 (𝜑 → (Scalar‘𝑇) = (Scalar‘𝐹))
19 frlmup.c . . 3 𝐶 = (Base‘𝑇)
20 eqid 2610 . . 3 (+g𝐹) = (+g𝐹)
21 eqid 2610 . . 3 (+g𝑇) = (+g𝑇)
22 lmodgrp 18693 . . . 4 (𝐹 ∈ LMod → 𝐹 ∈ Grp)
2315, 22syl 17 . . 3 (𝜑𝐹 ∈ Grp)
24 lmodgrp 18693 . . . 4 (𝑇 ∈ LMod → 𝑇 ∈ Grp)
258, 24syl 17 . . 3 (𝜑𝑇 ∈ Grp)
26 eleq1 2676 . . . . . . 7 (𝑧 = 𝑥 → (𝑧𝐵𝑥𝐵))
2726anbi2d 736 . . . . . 6 (𝑧 = 𝑥 → ((𝜑𝑧𝐵) ↔ (𝜑𝑥𝐵)))
28 oveq1 6556 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧𝑓 · 𝐴) = (𝑥𝑓 · 𝐴))
2928oveq2d 6565 . . . . . . 7 (𝑧 = 𝑥 → (𝑇 Σg (𝑧𝑓 · 𝐴)) = (𝑇 Σg (𝑥𝑓 · 𝐴)))
3029eleq1d 2672 . . . . . 6 (𝑧 = 𝑥 → ((𝑇 Σg (𝑧𝑓 · 𝐴)) ∈ 𝐶 ↔ (𝑇 Σg (𝑥𝑓 · 𝐴)) ∈ 𝐶))
3127, 30imbi12d 333 . . . . 5 (𝑧 = 𝑥 → (((𝜑𝑧𝐵) → (𝑇 Σg (𝑧𝑓 · 𝐴)) ∈ 𝐶) ↔ ((𝜑𝑥𝐵) → (𝑇 Σg (𝑥𝑓 · 𝐴)) ∈ 𝐶)))
32 eqid 2610 . . . . . 6 (0g𝑇) = (0g𝑇)
33 lmodcmn 18734 . . . . . . . 8 (𝑇 ∈ LMod → 𝑇 ∈ CMnd)
348, 33syl 17 . . . . . . 7 (𝜑𝑇 ∈ CMnd)
3534adantr 480 . . . . . 6 ((𝜑𝑧𝐵) → 𝑇 ∈ CMnd)
3612adantr 480 . . . . . 6 ((𝜑𝑧𝐵) → 𝐼𝑋)
378ad2antrr 758 . . . . . . . 8 (((𝜑𝑧𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦𝐶)) → 𝑇 ∈ LMod)
38 simprl 790 . . . . . . . . 9 (((𝜑𝑧𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦𝐶)) → 𝑥 ∈ (Base‘𝑅))
397fveq2d 6107 . . . . . . . . . 10 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑇)))
4039ad2antrr 758 . . . . . . . . 9 (((𝜑𝑧𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦𝐶)) → (Base‘𝑅) = (Base‘(Scalar‘𝑇)))
4138, 40eleqtrd 2690 . . . . . . . 8 (((𝜑𝑧𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦𝐶)) → 𝑥 ∈ (Base‘(Scalar‘𝑇)))
42 simprr 792 . . . . . . . 8 (((𝜑𝑧𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦𝐶)) → 𝑦𝐶)
43 eqid 2610 . . . . . . . . 9 (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑇))
4419, 5, 3, 43lmodvscl 18703 . . . . . . . 8 ((𝑇 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑦𝐶) → (𝑥 · 𝑦) ∈ 𝐶)
4537, 41, 42, 44syl3anc 1318 . . . . . . 7 (((𝜑𝑧𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦𝐶)) → (𝑥 · 𝑦) ∈ 𝐶)
46 eqid 2610 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
4713, 46, 1frlmbasf 19923 . . . . . . . 8 ((𝐼𝑋𝑧𝐵) → 𝑧:𝐼⟶(Base‘𝑅))
4812, 47sylan 487 . . . . . . 7 ((𝜑𝑧𝐵) → 𝑧:𝐼⟶(Base‘𝑅))
49 frlmup.a . . . . . . . 8 (𝜑𝐴:𝐼𝐶)
5049adantr 480 . . . . . . 7 ((𝜑𝑧𝐵) → 𝐴:𝐼𝐶)
51 inidm 3784 . . . . . . 7 (𝐼𝐼) = 𝐼
5245, 48, 50, 36, 36, 51off 6810 . . . . . 6 ((𝜑𝑧𝐵) → (𝑧𝑓 · 𝐴):𝐼𝐶)
53 ovex 6577 . . . . . . . 8 (𝑧𝑓 · 𝐴) ∈ V
5453a1i 11 . . . . . . 7 ((𝜑𝑧𝐵) → (𝑧𝑓 · 𝐴) ∈ V)
55 ffun 5961 . . . . . . . 8 ((𝑧𝑓 · 𝐴):𝐼𝐶 → Fun (𝑧𝑓 · 𝐴))
5652, 55syl 17 . . . . . . 7 ((𝜑𝑧𝐵) → Fun (𝑧𝑓 · 𝐴))
57 fvex 6113 . . . . . . . 8 (0g𝑇) ∈ V
5857a1i 11 . . . . . . 7 ((𝜑𝑧𝐵) → (0g𝑇) ∈ V)
59 eqid 2610 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
6013, 59, 1frlmbasfsupp 19921 . . . . . . . . . 10 ((𝐼𝑋𝑧𝐵) → 𝑧 finSupp (0g𝑅))
6112, 60sylan 487 . . . . . . . . 9 ((𝜑𝑧𝐵) → 𝑧 finSupp (0g𝑅))
627fveq2d 6107 . . . . . . . . . . . 12 (𝜑 → (0g𝑅) = (0g‘(Scalar‘𝑇)))
6362eqcomd 2616 . . . . . . . . . . 11 (𝜑 → (0g‘(Scalar‘𝑇)) = (0g𝑅))
6463breq2d 4595 . . . . . . . . . 10 (𝜑 → (𝑧 finSupp (0g‘(Scalar‘𝑇)) ↔ 𝑧 finSupp (0g𝑅)))
6564adantr 480 . . . . . . . . 9 ((𝜑𝑧𝐵) → (𝑧 finSupp (0g‘(Scalar‘𝑇)) ↔ 𝑧 finSupp (0g𝑅)))
6661, 65mpbird 246 . . . . . . . 8 ((𝜑𝑧𝐵) → 𝑧 finSupp (0g‘(Scalar‘𝑇)))
6766fsuppimpd 8165 . . . . . . 7 ((𝜑𝑧𝐵) → (𝑧 supp (0g‘(Scalar‘𝑇))) ∈ Fin)
68 ssid 3587 . . . . . . . . 9 (𝑧 supp (0g‘(Scalar‘𝑇))) ⊆ (𝑧 supp (0g‘(Scalar‘𝑇)))
6968a1i 11 . . . . . . . 8 ((𝜑𝑧𝐵) → (𝑧 supp (0g‘(Scalar‘𝑇))) ⊆ (𝑧 supp (0g‘(Scalar‘𝑇))))
708ad2antrr 758 . . . . . . . . 9 (((𝜑𝑧𝐵) ∧ 𝑤𝐶) → 𝑇 ∈ LMod)
71 eqid 2610 . . . . . . . . . 10 (0g‘(Scalar‘𝑇)) = (0g‘(Scalar‘𝑇))
7219, 5, 3, 71, 32lmod0vs 18719 . . . . . . . . 9 ((𝑇 ∈ LMod ∧ 𝑤𝐶) → ((0g‘(Scalar‘𝑇)) · 𝑤) = (0g𝑇))
7370, 72sylancom 698 . . . . . . . 8 (((𝜑𝑧𝐵) ∧ 𝑤𝐶) → ((0g‘(Scalar‘𝑇)) · 𝑤) = (0g𝑇))
74 fvex 6113 . . . . . . . . 9 (0g‘(Scalar‘𝑇)) ∈ V
7574a1i 11 . . . . . . . 8 ((𝜑𝑧𝐵) → (0g‘(Scalar‘𝑇)) ∈ V)
7669, 73, 48, 50, 36, 75suppssof1 7215 . . . . . . 7 ((𝜑𝑧𝐵) → ((𝑧𝑓 · 𝐴) supp (0g𝑇)) ⊆ (𝑧 supp (0g‘(Scalar‘𝑇))))
77 suppssfifsupp 8173 . . . . . . 7 ((((𝑧𝑓 · 𝐴) ∈ V ∧ Fun (𝑧𝑓 · 𝐴) ∧ (0g𝑇) ∈ V) ∧ ((𝑧 supp (0g‘(Scalar‘𝑇))) ∈ Fin ∧ ((𝑧𝑓 · 𝐴) supp (0g𝑇)) ⊆ (𝑧 supp (0g‘(Scalar‘𝑇))))) → (𝑧𝑓 · 𝐴) finSupp (0g𝑇))
7854, 56, 58, 67, 76, 77syl32anc 1326 . . . . . 6 ((𝜑𝑧𝐵) → (𝑧𝑓 · 𝐴) finSupp (0g𝑇))
7919, 32, 35, 36, 52, 78gsumcl 18139 . . . . 5 ((𝜑𝑧𝐵) → (𝑇 Σg (𝑧𝑓 · 𝐴)) ∈ 𝐶)
8031, 79chvarv 2251 . . . 4 ((𝜑𝑥𝐵) → (𝑇 Σg (𝑥𝑓 · 𝐴)) ∈ 𝐶)
81 frlmup.e . . . 4 𝐸 = (𝑥𝐵 ↦ (𝑇 Σg (𝑥𝑓 · 𝐴)))
8280, 81fmptd 6292 . . 3 (𝜑𝐸:𝐵𝐶)
8334adantr 480 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑇 ∈ CMnd)
8412adantr 480 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝐼𝑋)
85 eleq1 2676 . . . . . . . . 9 (𝑧 = 𝑦 → (𝑧𝐵𝑦𝐵))
8685anbi2d 736 . . . . . . . 8 (𝑧 = 𝑦 → ((𝜑𝑧𝐵) ↔ (𝜑𝑦𝐵)))
87 oveq1 6556 . . . . . . . . 9 (𝑧 = 𝑦 → (𝑧𝑓 · 𝐴) = (𝑦𝑓 · 𝐴))
8887feq1d 5943 . . . . . . . 8 (𝑧 = 𝑦 → ((𝑧𝑓 · 𝐴):𝐼𝐶 ↔ (𝑦𝑓 · 𝐴):𝐼𝐶))
8986, 88imbi12d 333 . . . . . . 7 (𝑧 = 𝑦 → (((𝜑𝑧𝐵) → (𝑧𝑓 · 𝐴):𝐼𝐶) ↔ ((𝜑𝑦𝐵) → (𝑦𝑓 · 𝐴):𝐼𝐶)))
9089, 52chvarv 2251 . . . . . 6 ((𝜑𝑦𝐵) → (𝑦𝑓 · 𝐴):𝐼𝐶)
9190adantrr 749 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦𝑓 · 𝐴):𝐼𝐶)
9252adantrl 748 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑧𝑓 · 𝐴):𝐼𝐶)
9387breq1d 4593 . . . . . . . 8 (𝑧 = 𝑦 → ((𝑧𝑓 · 𝐴) finSupp (0g𝑇) ↔ (𝑦𝑓 · 𝐴) finSupp (0g𝑇)))
9486, 93imbi12d 333 . . . . . . 7 (𝑧 = 𝑦 → (((𝜑𝑧𝐵) → (𝑧𝑓 · 𝐴) finSupp (0g𝑇)) ↔ ((𝜑𝑦𝐵) → (𝑦𝑓 · 𝐴) finSupp (0g𝑇))))
9594, 78chvarv 2251 . . . . . 6 ((𝜑𝑦𝐵) → (𝑦𝑓 · 𝐴) finSupp (0g𝑇))
9695adantrr 749 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦𝑓 · 𝐴) finSupp (0g𝑇))
9778adantrl 748 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑧𝑓 · 𝐴) finSupp (0g𝑇))
9819, 32, 21, 83, 84, 91, 92, 96, 97gsumadd 18146 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑇 Σg ((𝑦𝑓 · 𝐴) ∘𝑓 (+g𝑇)(𝑧𝑓 · 𝐴))) = ((𝑇 Σg (𝑦𝑓 · 𝐴))(+g𝑇)(𝑇 Σg (𝑧𝑓 · 𝐴))))
991, 20lmodvacl 18700 . . . . . . . 8 ((𝐹 ∈ LMod ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝐹)𝑧) ∈ 𝐵)
100993expb 1258 . . . . . . 7 ((𝐹 ∈ LMod ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝐹)𝑧) ∈ 𝐵)
10115, 100sylan 487 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝐹)𝑧) ∈ 𝐵)
102 oveq1 6556 . . . . . . . 8 (𝑥 = (𝑦(+g𝐹)𝑧) → (𝑥𝑓 · 𝐴) = ((𝑦(+g𝐹)𝑧) ∘𝑓 · 𝐴))
103102oveq2d 6565 . . . . . . 7 (𝑥 = (𝑦(+g𝐹)𝑧) → (𝑇 Σg (𝑥𝑓 · 𝐴)) = (𝑇 Σg ((𝑦(+g𝐹)𝑧) ∘𝑓 · 𝐴)))
104 ovex 6577 . . . . . . 7 (𝑇 Σg ((𝑦(+g𝐹)𝑧) ∘𝑓 · 𝐴)) ∈ V
105103, 81, 104fvmpt 6191 . . . . . 6 ((𝑦(+g𝐹)𝑧) ∈ 𝐵 → (𝐸‘(𝑦(+g𝐹)𝑧)) = (𝑇 Σg ((𝑦(+g𝐹)𝑧) ∘𝑓 · 𝐴)))
106101, 105syl 17 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝐸‘(𝑦(+g𝐹)𝑧)) = (𝑇 Σg ((𝑦(+g𝐹)𝑧) ∘𝑓 · 𝐴)))
10711adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑅 ∈ Ring)
108 simprl 790 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑦𝐵)
109 simprr 792 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑧𝐵)
110 eqid 2610 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
11113, 1, 107, 84, 108, 109, 110, 20frlmplusgval 19926 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝐹)𝑧) = (𝑦𝑓 (+g𝑅)𝑧))
112111oveq1d 6564 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝑦(+g𝐹)𝑧) ∘𝑓 · 𝐴) = ((𝑦𝑓 (+g𝑅)𝑧) ∘𝑓 · 𝐴))
11313, 46, 1frlmbasf 19923 . . . . . . . . . . . . 13 ((𝐼𝑋𝑦𝐵) → 𝑦:𝐼⟶(Base‘𝑅))
11412, 113sylan 487 . . . . . . . . . . . 12 ((𝜑𝑦𝐵) → 𝑦:𝐼⟶(Base‘𝑅))
115114adantrr 749 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑦:𝐼⟶(Base‘𝑅))
116 ffn 5958 . . . . . . . . . . 11 (𝑦:𝐼⟶(Base‘𝑅) → 𝑦 Fn 𝐼)
117115, 116syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑦 Fn 𝐼)
11848adantrl 748 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑧:𝐼⟶(Base‘𝑅))
119 ffn 5958 . . . . . . . . . . 11 (𝑧:𝐼⟶(Base‘𝑅) → 𝑧 Fn 𝐼)
120118, 119syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑧 Fn 𝐼)
121117, 120, 84, 84, 51offn 6806 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦𝑓 (+g𝑅)𝑧) Fn 𝐼)
122 ffn 5958 . . . . . . . . . . 11 (𝐴:𝐼𝐶𝐴 Fn 𝐼)
12349, 122syl 17 . . . . . . . . . 10 (𝜑𝐴 Fn 𝐼)
124123adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝐴 Fn 𝐼)
125121, 124, 84, 84, 51offn 6806 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝑦𝑓 (+g𝑅)𝑧) ∘𝑓 · 𝐴) Fn 𝐼)
126 ffn 5958 . . . . . . . . . . 11 ((𝑦𝑓 · 𝐴):𝐼𝐶 → (𝑦𝑓 · 𝐴) Fn 𝐼)
12790, 126syl 17 . . . . . . . . . 10 ((𝜑𝑦𝐵) → (𝑦𝑓 · 𝐴) Fn 𝐼)
128127adantrr 749 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦𝑓 · 𝐴) Fn 𝐼)
129 ffn 5958 . . . . . . . . . . 11 ((𝑧𝑓 · 𝐴):𝐼𝐶 → (𝑧𝑓 · 𝐴) Fn 𝐼)
13052, 129syl 17 . . . . . . . . . 10 ((𝜑𝑧𝐵) → (𝑧𝑓 · 𝐴) Fn 𝐼)
131130adantrl 748 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑧𝑓 · 𝐴) Fn 𝐼)
132128, 131, 84, 84, 51offn 6806 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝑦𝑓 · 𝐴) ∘𝑓 (+g𝑇)(𝑧𝑓 · 𝐴)) Fn 𝐼)
1337fveq2d 6107 . . . . . . . . . . . . . 14 (𝜑 → (+g𝑅) = (+g‘(Scalar‘𝑇)))
134133ad2antrr 758 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (+g𝑅) = (+g‘(Scalar‘𝑇)))
135134oveqd 6566 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑦𝑥)(+g𝑅)(𝑧𝑥)) = ((𝑦𝑥)(+g‘(Scalar‘𝑇))(𝑧𝑥)))
136135oveq1d 6564 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦𝑥)(+g𝑅)(𝑧𝑥)) · (𝐴𝑥)) = (((𝑦𝑥)(+g‘(Scalar‘𝑇))(𝑧𝑥)) · (𝐴𝑥)))
1378ad2antrr 758 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → 𝑇 ∈ LMod)
138115ffvelrnda 6267 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (𝑦𝑥) ∈ (Base‘𝑅))
13939ad2antrr 758 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (Base‘𝑅) = (Base‘(Scalar‘𝑇)))
140138, 139eleqtrd 2690 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (𝑦𝑥) ∈ (Base‘(Scalar‘𝑇)))
141118ffvelrnda 6267 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (𝑧𝑥) ∈ (Base‘𝑅))
142141, 139eleqtrd 2690 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (𝑧𝑥) ∈ (Base‘(Scalar‘𝑇)))
14349adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝐴:𝐼𝐶)
144143ffvelrnda 6267 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (𝐴𝑥) ∈ 𝐶)
145 eqid 2610 . . . . . . . . . . . . 13 (+g‘(Scalar‘𝑇)) = (+g‘(Scalar‘𝑇))
14619, 21, 5, 3, 43, 145lmodvsdir 18710 . . . . . . . . . . . 12 ((𝑇 ∈ LMod ∧ ((𝑦𝑥) ∈ (Base‘(Scalar‘𝑇)) ∧ (𝑧𝑥) ∈ (Base‘(Scalar‘𝑇)) ∧ (𝐴𝑥) ∈ 𝐶)) → (((𝑦𝑥)(+g‘(Scalar‘𝑇))(𝑧𝑥)) · (𝐴𝑥)) = (((𝑦𝑥) · (𝐴𝑥))(+g𝑇)((𝑧𝑥) · (𝐴𝑥))))
147137, 140, 142, 144, 146syl13anc 1320 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦𝑥)(+g‘(Scalar‘𝑇))(𝑧𝑥)) · (𝐴𝑥)) = (((𝑦𝑥) · (𝐴𝑥))(+g𝑇)((𝑧𝑥) · (𝐴𝑥))))
148136, 147eqtrd 2644 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦𝑥)(+g𝑅)(𝑧𝑥)) · (𝐴𝑥)) = (((𝑦𝑥) · (𝐴𝑥))(+g𝑇)((𝑧𝑥) · (𝐴𝑥))))
149117adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → 𝑦 Fn 𝐼)
150120adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → 𝑧 Fn 𝐼)
15112ad2antrr 758 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → 𝐼𝑋)
152 simpr 476 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → 𝑥𝐼)
153 fnfvof 6809 . . . . . . . . . . . 12 (((𝑦 Fn 𝐼𝑧 Fn 𝐼) ∧ (𝐼𝑋𝑥𝐼)) → ((𝑦𝑓 (+g𝑅)𝑧)‘𝑥) = ((𝑦𝑥)(+g𝑅)(𝑧𝑥)))
154149, 150, 151, 152, 153syl22anc 1319 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑦𝑓 (+g𝑅)𝑧)‘𝑥) = ((𝑦𝑥)(+g𝑅)(𝑧𝑥)))
155154oveq1d 6564 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦𝑓 (+g𝑅)𝑧)‘𝑥) · (𝐴𝑥)) = (((𝑦𝑥)(+g𝑅)(𝑧𝑥)) · (𝐴𝑥)))
156123ad2antrr 758 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → 𝐴 Fn 𝐼)
157 fnfvof 6809 . . . . . . . . . . . 12 (((𝑦 Fn 𝐼𝐴 Fn 𝐼) ∧ (𝐼𝑋𝑥𝐼)) → ((𝑦𝑓 · 𝐴)‘𝑥) = ((𝑦𝑥) · (𝐴𝑥)))
158149, 156, 151, 152, 157syl22anc 1319 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑦𝑓 · 𝐴)‘𝑥) = ((𝑦𝑥) · (𝐴𝑥)))
159 fnfvof 6809 . . . . . . . . . . . 12 (((𝑧 Fn 𝐼𝐴 Fn 𝐼) ∧ (𝐼𝑋𝑥𝐼)) → ((𝑧𝑓 · 𝐴)‘𝑥) = ((𝑧𝑥) · (𝐴𝑥)))
160150, 156, 151, 152, 159syl22anc 1319 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑧𝑓 · 𝐴)‘𝑥) = ((𝑧𝑥) · (𝐴𝑥)))
161158, 160oveq12d 6567 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦𝑓 · 𝐴)‘𝑥)(+g𝑇)((𝑧𝑓 · 𝐴)‘𝑥)) = (((𝑦𝑥) · (𝐴𝑥))(+g𝑇)((𝑧𝑥) · (𝐴𝑥))))
162148, 155, 1613eqtr4d 2654 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦𝑓 (+g𝑅)𝑧)‘𝑥) · (𝐴𝑥)) = (((𝑦𝑓 · 𝐴)‘𝑥)(+g𝑇)((𝑧𝑓 · 𝐴)‘𝑥)))
163121adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (𝑦𝑓 (+g𝑅)𝑧) Fn 𝐼)
164 fnfvof 6809 . . . . . . . . . 10 ((((𝑦𝑓 (+g𝑅)𝑧) Fn 𝐼𝐴 Fn 𝐼) ∧ (𝐼𝑋𝑥𝐼)) → (((𝑦𝑓 (+g𝑅)𝑧) ∘𝑓 · 𝐴)‘𝑥) = (((𝑦𝑓 (+g𝑅)𝑧)‘𝑥) · (𝐴𝑥)))
165163, 156, 151, 152, 164syl22anc 1319 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦𝑓 (+g𝑅)𝑧) ∘𝑓 · 𝐴)‘𝑥) = (((𝑦𝑓 (+g𝑅)𝑧)‘𝑥) · (𝐴𝑥)))
166128adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (𝑦𝑓 · 𝐴) Fn 𝐼)
167131adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (𝑧𝑓 · 𝐴) Fn 𝐼)
168 fnfvof 6809 . . . . . . . . . 10 ((((𝑦𝑓 · 𝐴) Fn 𝐼 ∧ (𝑧𝑓 · 𝐴) Fn 𝐼) ∧ (𝐼𝑋𝑥𝐼)) → (((𝑦𝑓 · 𝐴) ∘𝑓 (+g𝑇)(𝑧𝑓 · 𝐴))‘𝑥) = (((𝑦𝑓 · 𝐴)‘𝑥)(+g𝑇)((𝑧𝑓 · 𝐴)‘𝑥)))
169166, 167, 151, 152, 168syl22anc 1319 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦𝑓 · 𝐴) ∘𝑓 (+g𝑇)(𝑧𝑓 · 𝐴))‘𝑥) = (((𝑦𝑓 · 𝐴)‘𝑥)(+g𝑇)((𝑧𝑓 · 𝐴)‘𝑥)))
170162, 165, 1693eqtr4d 2654 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦𝑓 (+g𝑅)𝑧) ∘𝑓 · 𝐴)‘𝑥) = (((𝑦𝑓 · 𝐴) ∘𝑓 (+g𝑇)(𝑧𝑓 · 𝐴))‘𝑥))
171125, 132, 170eqfnfvd 6222 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝑦𝑓 (+g𝑅)𝑧) ∘𝑓 · 𝐴) = ((𝑦𝑓 · 𝐴) ∘𝑓 (+g𝑇)(𝑧𝑓 · 𝐴)))
172112, 171eqtrd 2644 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝑦(+g𝐹)𝑧) ∘𝑓 · 𝐴) = ((𝑦𝑓 · 𝐴) ∘𝑓 (+g𝑇)(𝑧𝑓 · 𝐴)))
173172oveq2d 6565 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑇 Σg ((𝑦(+g𝐹)𝑧) ∘𝑓 · 𝐴)) = (𝑇 Σg ((𝑦𝑓 · 𝐴) ∘𝑓 (+g𝑇)(𝑧𝑓 · 𝐴))))
174106, 173eqtrd 2644 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝐸‘(𝑦(+g𝐹)𝑧)) = (𝑇 Σg ((𝑦𝑓 · 𝐴) ∘𝑓 (+g𝑇)(𝑧𝑓 · 𝐴))))
175 oveq1 6556 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝑓 · 𝐴) = (𝑦𝑓 · 𝐴))
176175oveq2d 6565 . . . . . . 7 (𝑥 = 𝑦 → (𝑇 Σg (𝑥𝑓 · 𝐴)) = (𝑇 Σg (𝑦𝑓 · 𝐴)))
177 ovex 6577 . . . . . . 7 (𝑇 Σg (𝑦𝑓 · 𝐴)) ∈ V
178176, 81, 177fvmpt 6191 . . . . . 6 (𝑦𝐵 → (𝐸𝑦) = (𝑇 Σg (𝑦𝑓 · 𝐴)))
179178ad2antrl 760 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝐸𝑦) = (𝑇 Σg (𝑦𝑓 · 𝐴)))
180 oveq1 6556 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥𝑓 · 𝐴) = (𝑧𝑓 · 𝐴))
181180oveq2d 6565 . . . . . . 7 (𝑥 = 𝑧 → (𝑇 Σg (𝑥𝑓 · 𝐴)) = (𝑇 Σg (𝑧𝑓 · 𝐴)))
182 ovex 6577 . . . . . . 7 (𝑇 Σg (𝑧𝑓 · 𝐴)) ∈ V
183181, 81, 182fvmpt 6191 . . . . . 6 (𝑧𝐵 → (𝐸𝑧) = (𝑇 Σg (𝑧𝑓 · 𝐴)))
184183ad2antll 761 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝐸𝑧) = (𝑇 Σg (𝑧𝑓 · 𝐴)))
185179, 184oveq12d 6567 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝐸𝑦)(+g𝑇)(𝐸𝑧)) = ((𝑇 Σg (𝑦𝑓 · 𝐴))(+g𝑇)(𝑇 Σg (𝑧𝑓 · 𝐴))))
18698, 174, 1853eqtr4d 2654 . . 3 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝐸‘(𝑦(+g𝐹)𝑧)) = ((𝐸𝑦)(+g𝑇)(𝐸𝑧)))
1871, 19, 20, 21, 23, 25, 82, 186isghmd 17492 . 2 (𝜑𝐸 ∈ (𝐹 GrpHom 𝑇))
1888adantr 480 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → 𝑇 ∈ LMod)
18912adantr 480 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → 𝐼𝑋)
19018fveq2d 6107 . . . . . . . 8 (𝜑 → (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝐹)))
191190eleq2d 2673 . . . . . . 7 (𝜑 → (𝑦 ∈ (Base‘(Scalar‘𝑇)) ↔ 𝑦 ∈ (Base‘(Scalar‘𝐹))))
192191biimpar 501 . . . . . 6 ((𝜑𝑦 ∈ (Base‘(Scalar‘𝐹))) → 𝑦 ∈ (Base‘(Scalar‘𝑇)))
193192adantrr 749 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → 𝑦 ∈ (Base‘(Scalar‘𝑇)))
19452adantrl 748 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑧𝑓 · 𝐴):𝐼𝐶)
195194ffvelrnda 6267 . . . . 5 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑧𝑓 · 𝐴)‘𝑥) ∈ 𝐶)
19652feqmptd 6159 . . . . . . 7 ((𝜑𝑧𝐵) → (𝑧𝑓 · 𝐴) = (𝑥𝐼 ↦ ((𝑧𝑓 · 𝐴)‘𝑥)))
197196, 78eqbrtrrd 4607 . . . . . 6 ((𝜑𝑧𝐵) → (𝑥𝐼 ↦ ((𝑧𝑓 · 𝐴)‘𝑥)) finSupp (0g𝑇))
198197adantrl 748 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑥𝐼 ↦ ((𝑧𝑓 · 𝐴)‘𝑥)) finSupp (0g𝑇))
19919, 5, 43, 32, 21, 3, 188, 189, 193, 195, 198gsumvsmul 18750 . . . 4 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑇 Σg (𝑥𝐼 ↦ (𝑦 · ((𝑧𝑓 · 𝐴)‘𝑥)))) = (𝑦 · (𝑇 Σg (𝑥𝐼 ↦ ((𝑧𝑓 · 𝐴)‘𝑥)))))
20015adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → 𝐹 ∈ LMod)
201 simprl 790 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → 𝑦 ∈ (Base‘(Scalar‘𝐹)))
202 simprr 792 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → 𝑧𝐵)
2031, 4, 2, 6lmodvscl 18703 . . . . . . . . . . . 12 ((𝐹 ∈ LMod ∧ 𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵) → (𝑦( ·𝑠𝐹)𝑧) ∈ 𝐵)
204200, 201, 202, 203syl3anc 1318 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑦( ·𝑠𝐹)𝑧) ∈ 𝐵)
20513, 46, 1frlmbasf 19923 . . . . . . . . . . 11 ((𝐼𝑋 ∧ (𝑦( ·𝑠𝐹)𝑧) ∈ 𝐵) → (𝑦( ·𝑠𝐹)𝑧):𝐼⟶(Base‘𝑅))
206189, 204, 205syl2anc 691 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑦( ·𝑠𝐹)𝑧):𝐼⟶(Base‘𝑅))
207 ffn 5958 . . . . . . . . . 10 ((𝑦( ·𝑠𝐹)𝑧):𝐼⟶(Base‘𝑅) → (𝑦( ·𝑠𝐹)𝑧) Fn 𝐼)
208206, 207syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑦( ·𝑠𝐹)𝑧) Fn 𝐼)
209123adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → 𝐴 Fn 𝐼)
210208, 209, 189, 189, 51offn 6806 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → ((𝑦( ·𝑠𝐹)𝑧) ∘𝑓 · 𝐴) Fn 𝐼)
211 dffn2 5960 . . . . . . . 8 (((𝑦( ·𝑠𝐹)𝑧) ∘𝑓 · 𝐴) Fn 𝐼 ↔ ((𝑦( ·𝑠𝐹)𝑧) ∘𝑓 · 𝐴):𝐼⟶V)
212210, 211sylib 207 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → ((𝑦( ·𝑠𝐹)𝑧) ∘𝑓 · 𝐴):𝐼⟶V)
213212feqmptd 6159 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → ((𝑦( ·𝑠𝐹)𝑧) ∘𝑓 · 𝐴) = (𝑥𝐼 ↦ (((𝑦( ·𝑠𝐹)𝑧) ∘𝑓 · 𝐴)‘𝑥)))
2147fveq2d 6107 . . . . . . . . . . . 12 (𝜑 → (.r𝑅) = (.r‘(Scalar‘𝑇)))
215214ad2antrr 758 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (.r𝑅) = (.r‘(Scalar‘𝑇)))
216215oveqd 6566 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (𝑦(.r𝑅)(𝑧𝑥)) = (𝑦(.r‘(Scalar‘𝑇))(𝑧𝑥)))
217216oveq1d 6564 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑦(.r𝑅)(𝑧𝑥)) · (𝐴𝑥)) = ((𝑦(.r‘(Scalar‘𝑇))(𝑧𝑥)) · (𝐴𝑥)))
2188ad2antrr 758 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝑇 ∈ LMod)
219 simplrl 796 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝑦 ∈ (Base‘(Scalar‘𝐹)))
220190ad2antrr 758 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝐹)))
221219, 220eleqtrrd 2691 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝑦 ∈ (Base‘(Scalar‘𝑇)))
22248ffvelrnda 6267 . . . . . . . . . . . 12 (((𝜑𝑧𝐵) ∧ 𝑥𝐼) → (𝑧𝑥) ∈ (Base‘𝑅))
22339ad2antrr 758 . . . . . . . . . . . 12 (((𝜑𝑧𝐵) ∧ 𝑥𝐼) → (Base‘𝑅) = (Base‘(Scalar‘𝑇)))
224222, 223eleqtrd 2690 . . . . . . . . . . 11 (((𝜑𝑧𝐵) ∧ 𝑥𝐼) → (𝑧𝑥) ∈ (Base‘(Scalar‘𝑇)))
225224adantlrl 752 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (𝑧𝑥) ∈ (Base‘(Scalar‘𝑇)))
22649ffvelrnda 6267 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → (𝐴𝑥) ∈ 𝐶)
227226adantlr 747 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (𝐴𝑥) ∈ 𝐶)
228 eqid 2610 . . . . . . . . . . 11 (.r‘(Scalar‘𝑇)) = (.r‘(Scalar‘𝑇))
22919, 5, 3, 43, 228lmodvsass 18711 . . . . . . . . . 10 ((𝑇 ∈ LMod ∧ (𝑦 ∈ (Base‘(Scalar‘𝑇)) ∧ (𝑧𝑥) ∈ (Base‘(Scalar‘𝑇)) ∧ (𝐴𝑥) ∈ 𝐶)) → ((𝑦(.r‘(Scalar‘𝑇))(𝑧𝑥)) · (𝐴𝑥)) = (𝑦 · ((𝑧𝑥) · (𝐴𝑥))))
230218, 221, 225, 227, 229syl13anc 1320 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑦(.r‘(Scalar‘𝑇))(𝑧𝑥)) · (𝐴𝑥)) = (𝑦 · ((𝑧𝑥) · (𝐴𝑥))))
231217, 230eqtrd 2644 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑦(.r𝑅)(𝑧𝑥)) · (𝐴𝑥)) = (𝑦 · ((𝑧𝑥) · (𝐴𝑥))))
232208adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (𝑦( ·𝑠𝐹)𝑧) Fn 𝐼)
233123ad2antrr 758 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝐴 Fn 𝐼)
23412ad2antrr 758 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝐼𝑋)
235 simpr 476 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝑥𝐼)
236 fnfvof 6809 . . . . . . . . . 10 ((((𝑦( ·𝑠𝐹)𝑧) Fn 𝐼𝐴 Fn 𝐼) ∧ (𝐼𝑋𝑥𝐼)) → (((𝑦( ·𝑠𝐹)𝑧) ∘𝑓 · 𝐴)‘𝑥) = (((𝑦( ·𝑠𝐹)𝑧)‘𝑥) · (𝐴𝑥)))
237232, 233, 234, 235, 236syl22anc 1319 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦( ·𝑠𝐹)𝑧) ∘𝑓 · 𝐴)‘𝑥) = (((𝑦( ·𝑠𝐹)𝑧)‘𝑥) · (𝐴𝑥)))
23817fveq2d 6107 . . . . . . . . . . . . 13 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝐹)))
239238ad2antrr 758 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (Base‘𝑅) = (Base‘(Scalar‘𝐹)))
240219, 239eleqtrrd 2691 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝑦 ∈ (Base‘𝑅))
241 simplrr 797 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝑧𝐵)
242 eqid 2610 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
24313, 1, 46, 234, 240, 241, 235, 2, 242frlmvscaval 19929 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑦( ·𝑠𝐹)𝑧)‘𝑥) = (𝑦(.r𝑅)(𝑧𝑥)))
244243oveq1d 6564 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦( ·𝑠𝐹)𝑧)‘𝑥) · (𝐴𝑥)) = ((𝑦(.r𝑅)(𝑧𝑥)) · (𝐴𝑥)))
245237, 244eqtrd 2644 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦( ·𝑠𝐹)𝑧) ∘𝑓 · 𝐴)‘𝑥) = ((𝑦(.r𝑅)(𝑧𝑥)) · (𝐴𝑥)))
24648, 119syl 17 . . . . . . . . . . . 12 ((𝜑𝑧𝐵) → 𝑧 Fn 𝐼)
247246adantrl 748 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → 𝑧 Fn 𝐼)
248247adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝑧 Fn 𝐼)
249248, 233, 234, 235, 159syl22anc 1319 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑧𝑓 · 𝐴)‘𝑥) = ((𝑧𝑥) · (𝐴𝑥)))
250249oveq2d 6565 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (𝑦 · ((𝑧𝑓 · 𝐴)‘𝑥)) = (𝑦 · ((𝑧𝑥) · (𝐴𝑥))))
251231, 245, 2503eqtr4d 2654 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦( ·𝑠𝐹)𝑧) ∘𝑓 · 𝐴)‘𝑥) = (𝑦 · ((𝑧𝑓 · 𝐴)‘𝑥)))
252251mpteq2dva 4672 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑥𝐼 ↦ (((𝑦( ·𝑠𝐹)𝑧) ∘𝑓 · 𝐴)‘𝑥)) = (𝑥𝐼 ↦ (𝑦 · ((𝑧𝑓 · 𝐴)‘𝑥))))
253213, 252eqtrd 2644 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → ((𝑦( ·𝑠𝐹)𝑧) ∘𝑓 · 𝐴) = (𝑥𝐼 ↦ (𝑦 · ((𝑧𝑓 · 𝐴)‘𝑥))))
254253oveq2d 6565 . . . 4 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑇 Σg ((𝑦( ·𝑠𝐹)𝑧) ∘𝑓 · 𝐴)) = (𝑇 Σg (𝑥𝐼 ↦ (𝑦 · ((𝑧𝑓 · 𝐴)‘𝑥)))))
255194feqmptd 6159 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑧𝑓 · 𝐴) = (𝑥𝐼 ↦ ((𝑧𝑓 · 𝐴)‘𝑥)))
256255oveq2d 6565 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑇 Σg (𝑧𝑓 · 𝐴)) = (𝑇 Σg (𝑥𝐼 ↦ ((𝑧𝑓 · 𝐴)‘𝑥))))
257256oveq2d 6565 . . . 4 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑦 · (𝑇 Σg (𝑧𝑓 · 𝐴))) = (𝑦 · (𝑇 Σg (𝑥𝐼 ↦ ((𝑧𝑓 · 𝐴)‘𝑥)))))
258199, 254, 2573eqtr4d 2654 . . 3 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑇 Σg ((𝑦( ·𝑠𝐹)𝑧) ∘𝑓 · 𝐴)) = (𝑦 · (𝑇 Σg (𝑧𝑓 · 𝐴))))
259 oveq1 6556 . . . . . 6 (𝑥 = (𝑦( ·𝑠𝐹)𝑧) → (𝑥𝑓 · 𝐴) = ((𝑦( ·𝑠𝐹)𝑧) ∘𝑓 · 𝐴))
260259oveq2d 6565 . . . . 5 (𝑥 = (𝑦( ·𝑠𝐹)𝑧) → (𝑇 Σg (𝑥𝑓 · 𝐴)) = (𝑇 Σg ((𝑦( ·𝑠𝐹)𝑧) ∘𝑓 · 𝐴)))
261 ovex 6577 . . . . 5 (𝑇 Σg ((𝑦( ·𝑠𝐹)𝑧) ∘𝑓 · 𝐴)) ∈ V
262260, 81, 261fvmpt 6191 . . . 4 ((𝑦( ·𝑠𝐹)𝑧) ∈ 𝐵 → (𝐸‘(𝑦( ·𝑠𝐹)𝑧)) = (𝑇 Σg ((𝑦( ·𝑠𝐹)𝑧) ∘𝑓 · 𝐴)))
263204, 262syl 17 . . 3 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝐸‘(𝑦( ·𝑠𝐹)𝑧)) = (𝑇 Σg ((𝑦( ·𝑠𝐹)𝑧) ∘𝑓 · 𝐴)))
264183oveq2d 6565 . . . 4 (𝑧𝐵 → (𝑦 · (𝐸𝑧)) = (𝑦 · (𝑇 Σg (𝑧𝑓 · 𝐴))))
265264ad2antll 761 . . 3 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑦 · (𝐸𝑧)) = (𝑦 · (𝑇 Σg (𝑧𝑓 · 𝐴))))
266258, 263, 2653eqtr4d 2654 . 2 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝐸‘(𝑦( ·𝑠𝐹)𝑧)) = (𝑦 · (𝐸𝑧)))
2671, 2, 3, 4, 5, 6, 15, 8, 18, 187, 266islmhmd 18860 1 (𝜑𝐸 ∈ (𝐹 LMHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  wss 3540   class class class wbr 4583  cmpt 4643  Fun wfun 5798   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  𝑓 cof 6793   supp csupp 7182  Fincfn 7841   finSupp cfsupp 8158  Basecbs 15695  +gcplusg 15768  .rcmulr 15769  Scalarcsca 15771   ·𝑠 cvsca 15772  0gc0g 15923   Σg cgsu 15924  Grpcgrp 17245  CMndccmn 18016  Ringcrg 18370  LModclmod 18686   LMHom clmhm 18840   freeLMod cfrlm 19909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-hom 15793  df-cco 15794  df-0g 15925  df-gsum 15926  df-prds 15931  df-pws 15933  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-subg 17414  df-ghm 17481  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-subrg 18601  df-lmod 18688  df-lss 18754  df-lmhm 18843  df-sra 18993  df-rgmod 18994  df-dsmm 19895  df-frlm 19910
This theorem is referenced by:  frlmup3  19958  frlmup4  19959  islindf5  19997  indlcim  19998  lnrfg  36708
  Copyright terms: Public domain W3C validator