Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnorec4 Structured version   Visualization version   GIF version

Theorem fmtnorec4 39999
Description: The fourth recurrence relation for Fermat numbers, see Wikipedia "Fermat number", 31-Jul-2021, https://en.wikipedia.org/wiki/Fermat_number#Basic_properties. (Contributed by AV, 31-Jul-2021.)
Assertion
Ref Expression
fmtnorec4 (𝑁 ∈ (ℤ‘2) → (FermatNo‘𝑁) = (((FermatNo‘(𝑁 − 1))↑2) − (2 · (((FermatNo‘(𝑁 − 2)) − 1)↑2))))

Proof of Theorem fmtnorec4
StepHypRef Expression
1 eluz2nn 11602 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
2 nnm1nn0 11211 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
31, 2syl 17 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ0)
4 fmtno 39979 . . . . . 6 ((𝑁 − 1) ∈ ℕ0 → (FermatNo‘(𝑁 − 1)) = ((2↑(2↑(𝑁 − 1))) + 1))
53, 4syl 17 . . . . 5 (𝑁 ∈ (ℤ‘2) → (FermatNo‘(𝑁 − 1)) = ((2↑(2↑(𝑁 − 1))) + 1))
65oveq1d 6564 . . . 4 (𝑁 ∈ (ℤ‘2) → ((FermatNo‘(𝑁 − 1))↑2) = (((2↑(2↑(𝑁 − 1))) + 1)↑2))
7 2nn 11062 . . . . . . . 8 2 ∈ ℕ
87a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℕ)
9 2nn0 11186 . . . . . . . . 9 2 ∈ ℕ0
109a1i 11 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℕ0)
1110, 3nn0expcld 12893 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 − 1)) ∈ ℕ0)
128, 11nnexpcld 12892 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (2↑(2↑(𝑁 − 1))) ∈ ℕ)
1312nncnd 10913 . . . . 5 (𝑁 ∈ (ℤ‘2) → (2↑(2↑(𝑁 − 1))) ∈ ℂ)
14 binom21 12842 . . . . 5 ((2↑(2↑(𝑁 − 1))) ∈ ℂ → (((2↑(2↑(𝑁 − 1))) + 1)↑2) = ((((2↑(2↑(𝑁 − 1)))↑2) + (2 · (2↑(2↑(𝑁 − 1))))) + 1))
1513, 14syl 17 . . . 4 (𝑁 ∈ (ℤ‘2) → (((2↑(2↑(𝑁 − 1))) + 1)↑2) = ((((2↑(2↑(𝑁 − 1)))↑2) + (2 · (2↑(2↑(𝑁 − 1))))) + 1))
16 2cn 10968 . . . . . . . . 9 2 ∈ ℂ
1716a1i 11 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℂ)
1817, 10, 11expmuld 12873 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (2↑((2↑(𝑁 − 1)) · 2)) = ((2↑(2↑(𝑁 − 1)))↑2))
1917, 3expp1d 12871 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (2↑((𝑁 − 1) + 1)) = ((2↑(𝑁 − 1)) · 2))
201nncnd 10913 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℂ)
21 npcan1 10334 . . . . . . . . . . 11 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
2220, 21syl 17 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → ((𝑁 − 1) + 1) = 𝑁)
2322oveq2d 6565 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (2↑((𝑁 − 1) + 1)) = (2↑𝑁))
2419, 23eqtr3d 2646 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → ((2↑(𝑁 − 1)) · 2) = (2↑𝑁))
2524oveq2d 6565 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (2↑((2↑(𝑁 − 1)) · 2)) = (2↑(2↑𝑁)))
2618, 25eqtr3d 2646 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ((2↑(2↑(𝑁 − 1)))↑2) = (2↑(2↑𝑁)))
2726oveq1d 6564 . . . . 5 (𝑁 ∈ (ℤ‘2) → (((2↑(2↑(𝑁 − 1)))↑2) + (2 · (2↑(2↑(𝑁 − 1))))) = ((2↑(2↑𝑁)) + (2 · (2↑(2↑(𝑁 − 1))))))
2827oveq1d 6564 . . . 4 (𝑁 ∈ (ℤ‘2) → ((((2↑(2↑(𝑁 − 1)))↑2) + (2 · (2↑(2↑(𝑁 − 1))))) + 1) = (((2↑(2↑𝑁)) + (2 · (2↑(2↑(𝑁 − 1))))) + 1))
296, 15, 283eqtrd 2648 . . 3 (𝑁 ∈ (ℤ‘2) → ((FermatNo‘(𝑁 − 1))↑2) = (((2↑(2↑𝑁)) + (2 · (2↑(2↑(𝑁 − 1))))) + 1))
30 uznn0sub 11595 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (𝑁 − 2) ∈ ℕ0)
31 fmtno 39979 . . . . . . . 8 ((𝑁 − 2) ∈ ℕ0 → (FermatNo‘(𝑁 − 2)) = ((2↑(2↑(𝑁 − 2))) + 1))
3230, 31syl 17 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (FermatNo‘(𝑁 − 2)) = ((2↑(2↑(𝑁 − 2))) + 1))
3332oveq1d 6564 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ((FermatNo‘(𝑁 − 2)) − 1) = (((2↑(2↑(𝑁 − 2))) + 1) − 1))
3433oveq1d 6564 . . . . 5 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 2)) − 1)↑2) = ((((2↑(2↑(𝑁 − 2))) + 1) − 1)↑2))
3510, 30nn0expcld 12893 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 − 2)) ∈ ℕ0)
368, 35nnexpcld 12892 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (2↑(2↑(𝑁 − 2))) ∈ ℕ)
3736nncnd 10913 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (2↑(2↑(𝑁 − 2))) ∈ ℂ)
38 peano2cn 10087 . . . . . . 7 ((2↑(2↑(𝑁 − 2))) ∈ ℂ → ((2↑(2↑(𝑁 − 2))) + 1) ∈ ℂ)
3937, 38syl 17 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ((2↑(2↑(𝑁 − 2))) + 1) ∈ ℂ)
40 binom2sub1 12844 . . . . . 6 (((2↑(2↑(𝑁 − 2))) + 1) ∈ ℂ → ((((2↑(2↑(𝑁 − 2))) + 1) − 1)↑2) = (((((2↑(2↑(𝑁 − 2))) + 1)↑2) − (2 · ((2↑(2↑(𝑁 − 2))) + 1))) + 1))
4139, 40syl 17 . . . . 5 (𝑁 ∈ (ℤ‘2) → ((((2↑(2↑(𝑁 − 2))) + 1) − 1)↑2) = (((((2↑(2↑(𝑁 − 2))) + 1)↑2) − (2 · ((2↑(2↑(𝑁 − 2))) + 1))) + 1))
42 binom21 12842 . . . . . . . 8 ((2↑(2↑(𝑁 − 2))) ∈ ℂ → (((2↑(2↑(𝑁 − 2))) + 1)↑2) = ((((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2))))) + 1))
4337, 42syl 17 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (((2↑(2↑(𝑁 − 2))) + 1)↑2) = ((((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2))))) + 1))
4443oveq1d 6564 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ((((2↑(2↑(𝑁 − 2))) + 1)↑2) − (2 · ((2↑(2↑(𝑁 − 2))) + 1))) = (((((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2))))) + 1) − (2 · ((2↑(2↑(𝑁 − 2))) + 1))))
4544oveq1d 6564 . . . . 5 (𝑁 ∈ (ℤ‘2) → (((((2↑(2↑(𝑁 − 2))) + 1)↑2) − (2 · ((2↑(2↑(𝑁 − 2))) + 1))) + 1) = ((((((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2))))) + 1) − (2 · ((2↑(2↑(𝑁 − 2))) + 1))) + 1))
4634, 41, 453eqtrd 2648 . . . 4 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 2)) − 1)↑2) = ((((((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2))))) + 1) − (2 · ((2↑(2↑(𝑁 − 2))) + 1))) + 1))
4746oveq2d 6565 . . 3 (𝑁 ∈ (ℤ‘2) → (2 · (((FermatNo‘(𝑁 − 2)) − 1)↑2)) = (2 · ((((((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2))))) + 1) − (2 · ((2↑(2↑(𝑁 − 2))) + 1))) + 1)))
4829, 47oveq12d 6567 . 2 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 1))↑2) − (2 · (((FermatNo‘(𝑁 − 2)) − 1)↑2))) = ((((2↑(2↑𝑁)) + (2 · (2↑(2↑(𝑁 − 1))))) + 1) − (2 · ((((((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2))))) + 1) − (2 · ((2↑(2↑(𝑁 − 2))) + 1))) + 1))))
4936, 10nnexpcld 12892 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → ((2↑(2↑(𝑁 − 2)))↑2) ∈ ℕ)
5049nncnd 10913 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → ((2↑(2↑(𝑁 − 2)))↑2) ∈ ℂ)
5117, 37mulcld 9939 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (2 · (2↑(2↑(𝑁 − 2)))) ∈ ℂ)
5250, 51addcld 9938 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2))))) ∈ ℂ)
53 peano2cn 10087 . . . . . . 7 ((((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2))))) ∈ ℂ → ((((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2))))) + 1) ∈ ℂ)
5452, 53syl 17 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ((((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2))))) + 1) ∈ ℂ)
5517, 39mulcld 9939 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (2 · ((2↑(2↑(𝑁 − 2))) + 1)) ∈ ℂ)
5654, 55subcld 10271 . . . . 5 (𝑁 ∈ (ℤ‘2) → (((((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2))))) + 1) − (2 · ((2↑(2↑(𝑁 − 2))) + 1))) ∈ ℂ)
57 1cnd 9935 . . . . 5 (𝑁 ∈ (ℤ‘2) → 1 ∈ ℂ)
5817, 56, 57adddid 9943 . . . 4 (𝑁 ∈ (ℤ‘2) → (2 · ((((((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2))))) + 1) − (2 · ((2↑(2↑(𝑁 − 2))) + 1))) + 1)) = ((2 · (((((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2))))) + 1) − (2 · ((2↑(2↑(𝑁 − 2))) + 1)))) + (2 · 1)))
5952, 57addcld 9938 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → ((((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2))))) + 1) ∈ ℂ)
6017, 59, 55subdid 10365 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (2 · (((((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2))))) + 1) − (2 · ((2↑(2↑(𝑁 − 2))) + 1)))) = ((2 · ((((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2))))) + 1)) − (2 · (2 · ((2↑(2↑(𝑁 − 2))) + 1)))))
6117, 52, 57adddid 9943 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (2 · ((((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2))))) + 1)) = ((2 · (((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2)))))) + (2 · 1)))
6217, 50, 51adddid 9943 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (2 · (((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2)))))) = ((2 · ((2↑(2↑(𝑁 − 2)))↑2)) + (2 · (2 · (2↑(2↑(𝑁 − 2)))))))
6317, 10, 35expmuld 12873 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → (2↑((2↑(𝑁 − 2)) · 2)) = ((2↑(2↑(𝑁 − 2)))↑2))
6417, 30expp1d 12871 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (2↑((𝑁 − 2) + 1)) = ((2↑(𝑁 − 2)) · 2))
6520, 17, 57subsubd 10299 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → (𝑁 − (2 − 1)) = ((𝑁 − 2) + 1))
6665eqcomd 2616 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → ((𝑁 − 2) + 1) = (𝑁 − (2 − 1)))
6766oveq2d 6565 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (2↑((𝑁 − 2) + 1)) = (2↑(𝑁 − (2 − 1))))
6864, 67eqtr3d 2646 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → ((2↑(𝑁 − 2)) · 2) = (2↑(𝑁 − (2 − 1))))
6968oveq2d 6565 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → (2↑((2↑(𝑁 − 2)) · 2)) = (2↑(2↑(𝑁 − (2 − 1)))))
7063, 69eqtr3d 2646 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) → ((2↑(2↑(𝑁 − 2)))↑2) = (2↑(2↑(𝑁 − (2 − 1)))))
7170oveq2d 6565 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → (2 · ((2↑(2↑(𝑁 − 2)))↑2)) = (2 · (2↑(2↑(𝑁 − (2 − 1))))))
72 2m1e1 11012 . . . . . . . . . . . . . . . . 17 (2 − 1) = 1
7372a1i 11 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (2 − 1) = 1)
7473oveq2d 6565 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → (𝑁 − (2 − 1)) = (𝑁 − 1))
7574oveq2d 6565 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 − (2 − 1))) = (2↑(𝑁 − 1)))
7675oveq2d 6565 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) → (2↑(2↑(𝑁 − (2 − 1)))) = (2↑(2↑(𝑁 − 1))))
7776oveq2d 6565 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → (2 · (2↑(2↑(𝑁 − (2 − 1))))) = (2 · (2↑(2↑(𝑁 − 1)))))
7871, 77eqtrd 2644 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → (2 · ((2↑(2↑(𝑁 − 2)))↑2)) = (2 · (2↑(2↑(𝑁 − 1)))))
7917, 17, 37mulassd 9942 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → ((2 · 2) · (2↑(2↑(𝑁 − 2)))) = (2 · (2 · (2↑(2↑(𝑁 − 2))))))
8079eqcomd 2616 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → (2 · (2 · (2↑(2↑(𝑁 − 2))))) = ((2 · 2) · (2↑(2↑(𝑁 − 2)))))
8178, 80oveq12d 6567 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → ((2 · ((2↑(2↑(𝑁 − 2)))↑2)) + (2 · (2 · (2↑(2↑(𝑁 − 2)))))) = ((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))))
8262, 81eqtrd 2644 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (2 · (((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2)))))) = ((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))))
83 2t1e2 11053 . . . . . . . . . 10 (2 · 1) = 2
8483a1i 11 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (2 · 1) = 2)
8582, 84oveq12d 6567 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → ((2 · (((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2)))))) + (2 · 1)) = (((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 2))
8661, 85eqtrd 2644 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (2 · ((((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2))))) + 1)) = (((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 2))
8717, 37, 57adddid 9943 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (2 · ((2↑(2↑(𝑁 − 2))) + 1)) = ((2 · (2↑(2↑(𝑁 − 2)))) + (2 · 1)))
8884oveq2d 6565 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → ((2 · (2↑(2↑(𝑁 − 2)))) + (2 · 1)) = ((2 · (2↑(2↑(𝑁 − 2)))) + 2))
8987, 88eqtrd 2644 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (2 · ((2↑(2↑(𝑁 − 2))) + 1)) = ((2 · (2↑(2↑(𝑁 − 2)))) + 2))
9089oveq2d 6565 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (2 · (2 · ((2↑(2↑(𝑁 − 2))) + 1))) = (2 · ((2 · (2↑(2↑(𝑁 − 2)))) + 2)))
9117, 51, 17adddid 9943 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (2 · ((2 · (2↑(2↑(𝑁 − 2)))) + 2)) = ((2 · (2 · (2↑(2↑(𝑁 − 2))))) + (2 · 2)))
92 2t2e4 11054 . . . . . . . . . 10 (2 · 2) = 4
9392a1i 11 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (2 · 2) = 4)
9480, 93oveq12d 6567 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → ((2 · (2 · (2↑(2↑(𝑁 − 2))))) + (2 · 2)) = (((2 · 2) · (2↑(2↑(𝑁 − 2)))) + 4))
9590, 91, 943eqtrd 2648 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (2 · (2 · ((2↑(2↑(𝑁 − 2))) + 1))) = (((2 · 2) · (2↑(2↑(𝑁 − 2)))) + 4))
9686, 95oveq12d 6567 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ((2 · ((((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2))))) + 1)) − (2 · (2 · ((2↑(2↑(𝑁 − 2))) + 1)))) = ((((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 2) − (((2 · 2) · (2↑(2↑(𝑁 − 2)))) + 4)))
9760, 96eqtrd 2644 . . . . 5 (𝑁 ∈ (ℤ‘2) → (2 · (((((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2))))) + 1) − (2 · ((2↑(2↑(𝑁 − 2))) + 1)))) = ((((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 2) − (((2 · 2) · (2↑(2↑(𝑁 − 2)))) + 4)))
9897, 84oveq12d 6567 . . . 4 (𝑁 ∈ (ℤ‘2) → ((2 · (((((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2))))) + 1) − (2 · ((2↑(2↑(𝑁 − 2))) + 1)))) + (2 · 1)) = (((((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 2) − (((2 · 2) · (2↑(2↑(𝑁 − 2)))) + 4)) + 2))
9958, 98eqtrd 2644 . . 3 (𝑁 ∈ (ℤ‘2) → (2 · ((((((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2))))) + 1) − (2 · ((2↑(2↑(𝑁 − 2))) + 1))) + 1)) = (((((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 2) − (((2 · 2) · (2↑(2↑(𝑁 − 2)))) + 4)) + 2))
10099oveq2d 6565 . 2 (𝑁 ∈ (ℤ‘2) → ((((2↑(2↑𝑁)) + (2 · (2↑(2↑(𝑁 − 1))))) + 1) − (2 · ((((((2↑(2↑(𝑁 − 2)))↑2) + (2 · (2↑(2↑(𝑁 − 2))))) + 1) − (2 · ((2↑(2↑(𝑁 − 2))) + 1))) + 1))) = ((((2↑(2↑𝑁)) + (2 · (2↑(2↑(𝑁 − 1))))) + 1) − (((((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 2) − (((2 · 2) · (2↑(2↑(𝑁 − 2)))) + 4)) + 2)))
10117, 13mulcld 9939 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → (2 · (2↑(2↑(𝑁 − 1)))) ∈ ℂ)
10216, 16mulcli 9924 . . . . . . . . . . . . 13 (2 · 2) ∈ ℂ
103102a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → (2 · 2) ∈ ℂ)
104103, 37mulcld 9939 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → ((2 · 2) · (2↑(2↑(𝑁 − 2)))) ∈ ℂ)
105101, 104addcld 9938 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → ((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) ∈ ℂ)
106105, 17addcld 9938 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 2) ∈ ℂ)
107 4cn 10975 . . . . . . . . . . 11 4 ∈ ℂ
108107a1i 11 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → 4 ∈ ℂ)
109104, 108addcld 9938 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (((2 · 2) · (2↑(2↑(𝑁 − 2)))) + 4) ∈ ℂ)
110105, 17, 17addassd 9941 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → ((((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 2) + 2) = (((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + (2 + 2)))
111 2p2e4 11021 . . . . . . . . . . . 12 (2 + 2) = 4
112111a1i 11 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → (2 + 2) = 4)
113112oveq2d 6565 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + (2 + 2)) = (((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 4))
114101, 104, 108addassd 9941 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 4) = ((2 · (2↑(2↑(𝑁 − 1)))) + (((2 · 2) · (2↑(2↑(𝑁 − 2)))) + 4)))
115110, 113, 1143eqtrd 2648 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → ((((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 2) + 2) = ((2 · (2↑(2↑(𝑁 − 1)))) + (((2 · 2) · (2↑(2↑(𝑁 − 2)))) + 4)))
116106, 17, 101, 109, 115subaddeqd 10325 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → ((((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 2) − (((2 · 2) · (2↑(2↑(𝑁 − 2)))) + 4)) = ((2 · (2↑(2↑(𝑁 − 1)))) − 2))
117116eqcomd 2616 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → ((2 · (2↑(2↑(𝑁 − 1)))) − 2) = ((((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 2) − (((2 · 2) · (2↑(2↑(𝑁 − 2)))) + 4)))
118106, 109subcld 10271 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → ((((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 2) − (((2 · 2) · (2↑(2↑(𝑁 − 2)))) + 4)) ∈ ℂ)
119101, 17, 118subadd2d 10290 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (((2 · (2↑(2↑(𝑁 − 1)))) − 2) = ((((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 2) − (((2 · 2) · (2↑(2↑(𝑁 − 2)))) + 4)) ↔ (((((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 2) − (((2 · 2) · (2↑(2↑(𝑁 − 2)))) + 4)) + 2) = (2 · (2↑(2↑(𝑁 − 1))))))
120117, 119mpbid 221 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (((((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 2) − (((2 · 2) · (2↑(2↑(𝑁 − 2)))) + 4)) + 2) = (2 · (2↑(2↑(𝑁 − 1)))))
121120oveq2d 6565 . . . . 5 (𝑁 ∈ (ℤ‘2) → ((2↑(2↑𝑁)) + (((((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 2) − (((2 · 2) · (2↑(2↑(𝑁 − 2)))) + 4)) + 2)) = ((2↑(2↑𝑁)) + (2 · (2↑(2↑(𝑁 − 1))))))
122 eluzge2nn0 11603 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ0)
12310, 122nn0expcld 12893 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (2↑𝑁) ∈ ℕ0)
1248, 123nnexpcld 12892 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (2↑(2↑𝑁)) ∈ ℕ)
125124nncnd 10913 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (2↑(2↑𝑁)) ∈ ℂ)
126125, 101addcld 9938 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ((2↑(2↑𝑁)) + (2 · (2↑(2↑(𝑁 − 1))))) ∈ ℂ)
127118, 17addcld 9938 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (((((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 2) − (((2 · 2) · (2↑(2↑(𝑁 − 2)))) + 4)) + 2) ∈ ℂ)
128126, 127, 125subadd2d 10290 . . . . 5 (𝑁 ∈ (ℤ‘2) → ((((2↑(2↑𝑁)) + (2 · (2↑(2↑(𝑁 − 1))))) − (((((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 2) − (((2 · 2) · (2↑(2↑(𝑁 − 2)))) + 4)) + 2)) = (2↑(2↑𝑁)) ↔ ((2↑(2↑𝑁)) + (((((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 2) − (((2 · 2) · (2↑(2↑(𝑁 − 2)))) + 4)) + 2)) = ((2↑(2↑𝑁)) + (2 · (2↑(2↑(𝑁 − 1)))))))
129121, 128mpbird 246 . . . 4 (𝑁 ∈ (ℤ‘2) → (((2↑(2↑𝑁)) + (2 · (2↑(2↑(𝑁 − 1))))) − (((((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 2) − (((2 · 2) · (2↑(2↑(𝑁 − 2)))) + 4)) + 2)) = (2↑(2↑𝑁)))
130129oveq1d 6564 . . 3 (𝑁 ∈ (ℤ‘2) → ((((2↑(2↑𝑁)) + (2 · (2↑(2↑(𝑁 − 1))))) − (((((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 2) − (((2 · 2) · (2↑(2↑(𝑁 − 2)))) + 4)) + 2)) + 1) = ((2↑(2↑𝑁)) + 1))
131126, 57, 127addsubd 10292 . . 3 (𝑁 ∈ (ℤ‘2) → ((((2↑(2↑𝑁)) + (2 · (2↑(2↑(𝑁 − 1))))) + 1) − (((((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 2) − (((2 · 2) · (2↑(2↑(𝑁 − 2)))) + 4)) + 2)) = ((((2↑(2↑𝑁)) + (2 · (2↑(2↑(𝑁 − 1))))) − (((((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 2) − (((2 · 2) · (2↑(2↑(𝑁 − 2)))) + 4)) + 2)) + 1))
132 fmtno 39979 . . . 4 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1))
133122, 132syl 17 . . 3 (𝑁 ∈ (ℤ‘2) → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1))
134130, 131, 1333eqtr4d 2654 . 2 (𝑁 ∈ (ℤ‘2) → ((((2↑(2↑𝑁)) + (2 · (2↑(2↑(𝑁 − 1))))) + 1) − (((((2 · (2↑(2↑(𝑁 − 1)))) + ((2 · 2) · (2↑(2↑(𝑁 − 2))))) + 2) − (((2 · 2) · (2↑(2↑(𝑁 − 2)))) + 4)) + 2)) = (FermatNo‘𝑁))
13548, 100, 1343eqtrrd 2649 1 (𝑁 ∈ (ℤ‘2) → (FermatNo‘𝑁) = (((FermatNo‘(𝑁 − 1))↑2) − (2 · (((FermatNo‘(𝑁 − 2)) − 1)↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  cfv 5804  (class class class)co 6549  cc 9813  1c1 9816   + caddc 9818   · cmul 9820  cmin 10145  cn 10897  2c2 10947  4c4 10949  0cn0 11169  cuz 11563  cexp 12722  FermatNocfmtno 39977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-n0 11170  df-z 11255  df-uz 11564  df-seq 12664  df-exp 12723  df-fmtno 39978
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator