Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumcvgsum Structured version   Visualization version   GIF version

Theorem esumcvgsum 29477
 Description: The value of the extended sum when the corresponding sum is convergent. (Contributed by Thierry Arnoux, 29-Oct-2019.)
Hypotheses
Ref Expression
esumcvgsum.1 (𝑘 = 𝑖𝐴 = 𝐵)
esumcvgsum.2 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (0[,)+∞))
esumcvgsum.3 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = 𝐴)
esumcvgsum.4 (𝜑 → seq1( + , 𝐹) ⇝ 𝐿)
esumcvgsum.5 (𝜑𝐿 ∈ ℝ)
Assertion
Ref Expression
esumcvgsum (𝜑 → Σ*𝑘 ∈ ℕ𝐴 = Σ𝑘 ∈ ℕ 𝐴)
Distinct variable groups:   𝑖,𝑘   𝐴,𝑖   𝐵,𝑘   𝑘,𝐹   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑖)   𝐴(𝑘)   𝐵(𝑖)   𝐹(𝑖)   𝐿(𝑖,𝑘)

Proof of Theorem esumcvgsum
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 esumcvgsum.2 . 2 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (0[,)+∞))
2 esumcvgsum.1 . 2 (𝑘 = 𝑖𝐴 = 𝐵)
3 simpll 786 . . . . . 6 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑗)) → 𝜑)
4 elfznn 12241 . . . . . . 7 (𝑘 ∈ (1...𝑗) → 𝑘 ∈ ℕ)
54adantl 481 . . . . . 6 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑗)) → 𝑘 ∈ ℕ)
6 esumcvgsum.3 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = 𝐴)
73, 5, 6syl2anc 691 . . . . 5 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑗)) → (𝐹𝑘) = 𝐴)
8 nnuz 11599 . . . . . . . 8 ℕ = (ℤ‘1)
98eleq2i 2680 . . . . . . 7 (𝑗 ∈ ℕ ↔ 𝑗 ∈ (ℤ‘1))
109biimpi 205 . . . . . 6 (𝑗 ∈ ℕ → 𝑗 ∈ (ℤ‘1))
1110adantl 481 . . . . 5 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ (ℤ‘1))
12 mnfxr 9975 . . . . . . . . 9 -∞ ∈ ℝ*
13 pnfxr 9971 . . . . . . . . 9 +∞ ∈ ℝ*
14 0re 9919 . . . . . . . . . 10 0 ∈ ℝ
15 mnflt 11833 . . . . . . . . . 10 (0 ∈ ℝ → -∞ < 0)
1614, 15ax-mp 5 . . . . . . . . 9 -∞ < 0
17 pnfge 11840 . . . . . . . . . 10 (+∞ ∈ ℝ* → +∞ ≤ +∞)
1813, 17ax-mp 5 . . . . . . . . 9 +∞ ≤ +∞
19 icossioo 12135 . . . . . . . . 9 (((-∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < 0 ∧ +∞ ≤ +∞)) → (0[,)+∞) ⊆ (-∞(,)+∞))
2012, 13, 16, 18, 19mp4an 705 . . . . . . . 8 (0[,)+∞) ⊆ (-∞(,)+∞)
21 ioomax 12119 . . . . . . . 8 (-∞(,)+∞) = ℝ
2220, 21sseqtri 3600 . . . . . . 7 (0[,)+∞) ⊆ ℝ
233, 5, 1syl2anc 691 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑗)) → 𝐴 ∈ (0[,)+∞))
2422, 23sseldi 3566 . . . . . 6 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑗)) → 𝐴 ∈ ℝ)
2524recnd 9947 . . . . 5 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑗)) → 𝐴 ∈ ℂ)
267, 11, 25fsumser 14308 . . . 4 ((𝜑𝑗 ∈ ℕ) → Σ𝑘 ∈ (1...𝑗)𝐴 = (seq1( + , 𝐹)‘𝑗))
2726mpteq2dva 4672 . . 3 (𝜑 → (𝑗 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑗)𝐴) = (𝑗 ∈ ℕ ↦ (seq1( + , 𝐹)‘𝑗)))
28 1z 11284 . . . . . . 7 1 ∈ ℤ
29 seqfn 12675 . . . . . . 7 (1 ∈ ℤ → seq1( + , 𝐹) Fn (ℤ‘1))
3028, 29ax-mp 5 . . . . . 6 seq1( + , 𝐹) Fn (ℤ‘1)
31 fneq2 5894 . . . . . . 7 (ℕ = (ℤ‘1) → (seq1( + , 𝐹) Fn ℕ ↔ seq1( + , 𝐹) Fn (ℤ‘1)))
328, 31ax-mp 5 . . . . . 6 (seq1( + , 𝐹) Fn ℕ ↔ seq1( + , 𝐹) Fn (ℤ‘1))
3330, 32mpbir 220 . . . . 5 seq1( + , 𝐹) Fn ℕ
34 dffn5 6151 . . . . 5 (seq1( + , 𝐹) Fn ℕ ↔ seq1( + , 𝐹) = (𝑗 ∈ ℕ ↦ (seq1( + , 𝐹)‘𝑗)))
3533, 34mpbi 219 . . . 4 seq1( + , 𝐹) = (𝑗 ∈ ℕ ↦ (seq1( + , 𝐹)‘𝑗))
36 seqex 12665 . . . . . 6 seq1( + , 𝐹) ∈ V
3736a1i 11 . . . . 5 (𝜑 → seq1( + , 𝐹) ∈ V)
38 esumcvgsum.5 . . . . 5 (𝜑𝐿 ∈ ℝ)
39 esumcvgsum.4 . . . . 5 (𝜑 → seq1( + , 𝐹) ⇝ 𝐿)
40 breldmg 5252 . . . . 5 ((seq1( + , 𝐹) ∈ V ∧ 𝐿 ∈ ℝ ∧ seq1( + , 𝐹) ⇝ 𝐿) → seq1( + , 𝐹) ∈ dom ⇝ )
4137, 38, 39, 40syl3anc 1318 . . . 4 (𝜑 → seq1( + , 𝐹) ∈ dom ⇝ )
4235, 41syl5eqelr 2693 . . 3 (𝜑 → (𝑗 ∈ ℕ ↦ (seq1( + , 𝐹)‘𝑗)) ∈ dom ⇝ )
4327, 42eqeltrd 2688 . 2 (𝜑 → (𝑗 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑗)𝐴) ∈ dom ⇝ )
441, 2, 43esumpcvgval 29467 1 (𝜑 → Σ*𝑘 ∈ ℕ𝐴 = Σ𝑘 ∈ ℕ 𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  Vcvv 3173   ⊆ wss 3540   class class class wbr 4583   ↦ cmpt 4643  dom cdm 5038   Fn wfn 5799  ‘cfv 5804  (class class class)co 6549  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818  +∞cpnf 9950  -∞cmnf 9951  ℝ*cxr 9952   < clt 9953   ≤ cle 9954  ℕcn 10897  ℤcz 11254  ℤ≥cuz 11563  (,)cioo 12046  [,)cico 12048  ...cfz 12197  seqcseq 12663   ⇝ cli 14063  Σcsu 14264  Σ*cesum 29416 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xadd 11823  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-ordt 15984  df-xrs 15985  df-mre 16069  df-mrc 16070  df-acs 16072  df-ps 17023  df-tsr 17024  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-minusg 17249  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-ntr 20634  df-nei 20712  df-cn 20841  df-haus 20929  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-tsms 21740  df-esum 29417 This theorem is referenced by:  omssubadd  29689
 Copyright terms: Public domain W3C validator