Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfiun Structured version   Visualization version   GIF version

Theorem elfiun 8219
 Description: A finite intersection of elements taken from a union of collections. (Contributed by Jeff Hankins, 15-Nov-2009.) (Proof shortened by Mario Carneiro, 26-Nov-2013.)
Assertion
Ref Expression
elfiun ((𝐵𝐷𝐶𝐾) → (𝐴 ∈ (fi‘(𝐵𝐶)) ↔ (𝐴 ∈ (fi‘𝐵) ∨ 𝐴 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐾,𝑦

Proof of Theorem elfiun
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elex 3185 . . . 4 (𝐴 ∈ (fi‘(𝐵𝐶)) → 𝐴 ∈ V)
21adantl 481 . . 3 (((𝐵𝐷𝐶𝐾) ∧ 𝐴 ∈ (fi‘(𝐵𝐶))) → 𝐴 ∈ V)
3 simpll 786 . . 3 (((𝐵𝐷𝐶𝐾) ∧ 𝐴 ∈ (fi‘(𝐵𝐶))) → 𝐵𝐷)
4 simplr 788 . . 3 (((𝐵𝐷𝐶𝐾) ∧ 𝐴 ∈ (fi‘(𝐵𝐶))) → 𝐶𝐾)
52, 3, 43jca 1235 . 2 (((𝐵𝐷𝐶𝐾) ∧ 𝐴 ∈ (fi‘(𝐵𝐶))) → (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾))
6 elex 3185 . . . . . 6 (𝐴 ∈ (fi‘𝐵) → 𝐴 ∈ V)
763anim1i 1241 . . . . 5 ((𝐴 ∈ (fi‘𝐵) ∧ 𝐵𝐷𝐶𝐾) → (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾))
873expib 1260 . . . 4 (𝐴 ∈ (fi‘𝐵) → ((𝐵𝐷𝐶𝐾) → (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾)))
9 elex 3185 . . . . . 6 (𝐴 ∈ (fi‘𝐶) → 𝐴 ∈ V)
1093anim1i 1241 . . . . 5 ((𝐴 ∈ (fi‘𝐶) ∧ 𝐵𝐷𝐶𝐾) → (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾))
11103expib 1260 . . . 4 (𝐴 ∈ (fi‘𝐶) → ((𝐵𝐷𝐶𝐾) → (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾)))
12 vex 3176 . . . . . . . . . 10 𝑥 ∈ V
1312inex1 4727 . . . . . . . . 9 (𝑥𝑦) ∈ V
14 eleq1 2676 . . . . . . . . 9 (𝐴 = (𝑥𝑦) → (𝐴 ∈ V ↔ (𝑥𝑦) ∈ V))
1513, 14mpbiri 247 . . . . . . . 8 (𝐴 = (𝑥𝑦) → 𝐴 ∈ V)
1615a1i 11 . . . . . . 7 ((𝑥 ∈ (fi‘𝐵) ∧ 𝑦 ∈ (fi‘𝐶)) → (𝐴 = (𝑥𝑦) → 𝐴 ∈ V))
1716rexlimivv 3018 . . . . . 6 (∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦) → 𝐴 ∈ V)
18173anim1i 1241 . . . . 5 ((∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦) ∧ 𝐵𝐷𝐶𝐾) → (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾))
19183expib 1260 . . . 4 (∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦) → ((𝐵𝐷𝐶𝐾) → (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾)))
208, 11, 193jaoi 1383 . . 3 ((𝐴 ∈ (fi‘𝐵) ∨ 𝐴 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦)) → ((𝐵𝐷𝐶𝐾) → (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾)))
2120impcom 445 . 2 (((𝐵𝐷𝐶𝐾) ∧ (𝐴 ∈ (fi‘𝐵) ∨ 𝐴 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦))) → (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾))
22 simp1 1054 . . . . 5 ((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) → 𝐴 ∈ V)
23 unexg 6857 . . . . . 6 ((𝐵𝐷𝐶𝐾) → (𝐵𝐶) ∈ V)
24233adant1 1072 . . . . 5 ((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) → (𝐵𝐶) ∈ V)
25 elfi 8202 . . . . 5 ((𝐴 ∈ V ∧ (𝐵𝐶) ∈ V) → (𝐴 ∈ (fi‘(𝐵𝐶)) ↔ ∃𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin)𝐴 = 𝑧))
2622, 24, 25syl2anc 691 . . . 4 ((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) → (𝐴 ∈ (fi‘(𝐵𝐶)) ↔ ∃𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin)𝐴 = 𝑧))
27 simpl1 1057 . . . . . . 7 (((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ 𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin)) → 𝐴 ∈ V)
28 eleq1 2676 . . . . . . . 8 (𝐴 = 𝑧 → (𝐴 ∈ V ↔ 𝑧 ∈ V))
29 intex 4747 . . . . . . . 8 (𝑧 ≠ ∅ ↔ 𝑧 ∈ V)
3028, 29syl6bbr 277 . . . . . . 7 (𝐴 = 𝑧 → (𝐴 ∈ V ↔ 𝑧 ≠ ∅))
3127, 30syl5ibcom 234 . . . . . 6 (((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ 𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin)) → (𝐴 = 𝑧𝑧 ≠ ∅))
32 simp22 1088 . . . . . . . . . . . . . 14 ((((𝑧𝐵) ≠ ∅ ∧ (𝑧𝐶) ≠ ∅) ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝐵𝐷)
33 inss2 3796 . . . . . . . . . . . . . . 15 (𝑧𝐵) ⊆ 𝐵
3433a1i 11 . . . . . . . . . . . . . 14 ((((𝑧𝐵) ≠ ∅ ∧ (𝑧𝐶) ≠ ∅) ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → (𝑧𝐵) ⊆ 𝐵)
35 simp1l 1078 . . . . . . . . . . . . . 14 ((((𝑧𝐵) ≠ ∅ ∧ (𝑧𝐶) ≠ ∅) ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → (𝑧𝐵) ≠ ∅)
36 simp3l 1082 . . . . . . . . . . . . . . . 16 ((((𝑧𝐵) ≠ ∅ ∧ (𝑧𝐶) ≠ ∅) ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin))
37 inss2 3796 . . . . . . . . . . . . . . . . 17 (𝒫 (𝐵𝐶) ∩ Fin) ⊆ Fin
3837sseli 3564 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) → 𝑧 ∈ Fin)
3936, 38syl 17 . . . . . . . . . . . . . . 15 ((((𝑧𝐵) ≠ ∅ ∧ (𝑧𝐶) ≠ ∅) ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝑧 ∈ Fin)
40 inss1 3795 . . . . . . . . . . . . . . 15 (𝑧𝐵) ⊆ 𝑧
41 ssfi 8065 . . . . . . . . . . . . . . 15 ((𝑧 ∈ Fin ∧ (𝑧𝐵) ⊆ 𝑧) → (𝑧𝐵) ∈ Fin)
4239, 40, 41sylancl 693 . . . . . . . . . . . . . 14 ((((𝑧𝐵) ≠ ∅ ∧ (𝑧𝐶) ≠ ∅) ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → (𝑧𝐵) ∈ Fin)
43 elfir 8204 . . . . . . . . . . . . . 14 ((𝐵𝐷 ∧ ((𝑧𝐵) ⊆ 𝐵 ∧ (𝑧𝐵) ≠ ∅ ∧ (𝑧𝐵) ∈ Fin)) → (𝑧𝐵) ∈ (fi‘𝐵))
4432, 34, 35, 42, 43syl13anc 1320 . . . . . . . . . . . . 13 ((((𝑧𝐵) ≠ ∅ ∧ (𝑧𝐶) ≠ ∅) ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → (𝑧𝐵) ∈ (fi‘𝐵))
45 simp23 1089 . . . . . . . . . . . . . 14 ((((𝑧𝐵) ≠ ∅ ∧ (𝑧𝐶) ≠ ∅) ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝐶𝐾)
46 inss2 3796 . . . . . . . . . . . . . . 15 (𝑧𝐶) ⊆ 𝐶
4746a1i 11 . . . . . . . . . . . . . 14 ((((𝑧𝐵) ≠ ∅ ∧ (𝑧𝐶) ≠ ∅) ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → (𝑧𝐶) ⊆ 𝐶)
48 simp1r 1079 . . . . . . . . . . . . . 14 ((((𝑧𝐵) ≠ ∅ ∧ (𝑧𝐶) ≠ ∅) ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → (𝑧𝐶) ≠ ∅)
49 inss1 3795 . . . . . . . . . . . . . . 15 (𝑧𝐶) ⊆ 𝑧
50 ssfi 8065 . . . . . . . . . . . . . . 15 ((𝑧 ∈ Fin ∧ (𝑧𝐶) ⊆ 𝑧) → (𝑧𝐶) ∈ Fin)
5139, 49, 50sylancl 693 . . . . . . . . . . . . . 14 ((((𝑧𝐵) ≠ ∅ ∧ (𝑧𝐶) ≠ ∅) ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → (𝑧𝐶) ∈ Fin)
52 elfir 8204 . . . . . . . . . . . . . 14 ((𝐶𝐾 ∧ ((𝑧𝐶) ⊆ 𝐶 ∧ (𝑧𝐶) ≠ ∅ ∧ (𝑧𝐶) ∈ Fin)) → (𝑧𝐶) ∈ (fi‘𝐶))
5345, 47, 48, 51, 52syl13anc 1320 . . . . . . . . . . . . 13 ((((𝑧𝐵) ≠ ∅ ∧ (𝑧𝐶) ≠ ∅) ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → (𝑧𝐶) ∈ (fi‘𝐶))
54 inss1 3795 . . . . . . . . . . . . . . . 16 (𝒫 (𝐵𝐶) ∩ Fin) ⊆ 𝒫 (𝐵𝐶)
5554sseli 3564 . . . . . . . . . . . . . . 15 (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) → 𝑧 ∈ 𝒫 (𝐵𝐶))
5655elpwid 4118 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) → 𝑧 ⊆ (𝐵𝐶))
57 indi 3832 . . . . . . . . . . . . . . . . 17 (𝑧 ∩ (𝐵𝐶)) = ((𝑧𝐵) ∪ (𝑧𝐶))
58 df-ss 3554 . . . . . . . . . . . . . . . . . 18 (𝑧 ⊆ (𝐵𝐶) ↔ (𝑧 ∩ (𝐵𝐶)) = 𝑧)
5958biimpi 205 . . . . . . . . . . . . . . . . 17 (𝑧 ⊆ (𝐵𝐶) → (𝑧 ∩ (𝐵𝐶)) = 𝑧)
6057, 59syl5reqr 2659 . . . . . . . . . . . . . . . 16 (𝑧 ⊆ (𝐵𝐶) → 𝑧 = ((𝑧𝐵) ∪ (𝑧𝐶)))
6160inteqd 4415 . . . . . . . . . . . . . . 15 (𝑧 ⊆ (𝐵𝐶) → 𝑧 = ((𝑧𝐵) ∪ (𝑧𝐶)))
62 intun 4444 . . . . . . . . . . . . . . 15 ((𝑧𝐵) ∪ (𝑧𝐶)) = ( (𝑧𝐵) ∩ (𝑧𝐶))
6361, 62syl6eq 2660 . . . . . . . . . . . . . 14 (𝑧 ⊆ (𝐵𝐶) → 𝑧 = ( (𝑧𝐵) ∩ (𝑧𝐶)))
6436, 56, 633syl 18 . . . . . . . . . . . . 13 ((((𝑧𝐵) ≠ ∅ ∧ (𝑧𝐶) ≠ ∅) ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝑧 = ( (𝑧𝐵) ∩ (𝑧𝐶)))
65 ineq1 3769 . . . . . . . . . . . . . . 15 (𝑥 = (𝑧𝐵) → (𝑥𝑦) = ( (𝑧𝐵) ∩ 𝑦))
6665eqeq2d 2620 . . . . . . . . . . . . . 14 (𝑥 = (𝑧𝐵) → ( 𝑧 = (𝑥𝑦) ↔ 𝑧 = ( (𝑧𝐵) ∩ 𝑦)))
67 ineq2 3770 . . . . . . . . . . . . . . 15 (𝑦 = (𝑧𝐶) → ( (𝑧𝐵) ∩ 𝑦) = ( (𝑧𝐵) ∩ (𝑧𝐶)))
6867eqeq2d 2620 . . . . . . . . . . . . . 14 (𝑦 = (𝑧𝐶) → ( 𝑧 = ( (𝑧𝐵) ∩ 𝑦) ↔ 𝑧 = ( (𝑧𝐵) ∩ (𝑧𝐶))))
6966, 68rspc2ev 3295 . . . . . . . . . . . . 13 (( (𝑧𝐵) ∈ (fi‘𝐵) ∧ (𝑧𝐶) ∈ (fi‘𝐶) ∧ 𝑧 = ( (𝑧𝐵) ∩ (𝑧𝐶))) → ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶) 𝑧 = (𝑥𝑦))
7044, 53, 64, 69syl3anc 1318 . . . . . . . . . . . 12 ((((𝑧𝐵) ≠ ∅ ∧ (𝑧𝐶) ≠ ∅) ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶) 𝑧 = (𝑥𝑦))
71703mix3d 1231 . . . . . . . . . . 11 ((((𝑧𝐵) ≠ ∅ ∧ (𝑧𝐶) ≠ ∅) ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → ( 𝑧 ∈ (fi‘𝐵) ∨ 𝑧 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶) 𝑧 = (𝑥𝑦)))
72713expib 1260 . . . . . . . . . 10 (((𝑧𝐵) ≠ ∅ ∧ (𝑧𝐶) ≠ ∅) → (((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → ( 𝑧 ∈ (fi‘𝐵) ∨ 𝑧 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶) 𝑧 = (𝑥𝑦))))
73 simp23 1089 . . . . . . . . . . . . 13 (((𝑧𝐵) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝐶𝐾)
74 simp1 1054 . . . . . . . . . . . . . . 15 (((𝑧𝐵) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → (𝑧𝐵) = ∅)
75 simp3l 1082 . . . . . . . . . . . . . . . 16 (((𝑧𝐵) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin))
76 reldisj 3972 . . . . . . . . . . . . . . . 16 (𝑧 ⊆ (𝐵𝐶) → ((𝑧𝐵) = ∅ ↔ 𝑧 ⊆ ((𝐵𝐶) ∖ 𝐵)))
7775, 56, 763syl 18 . . . . . . . . . . . . . . 15 (((𝑧𝐵) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → ((𝑧𝐵) = ∅ ↔ 𝑧 ⊆ ((𝐵𝐶) ∖ 𝐵)))
7874, 77mpbid 221 . . . . . . . . . . . . . 14 (((𝑧𝐵) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝑧 ⊆ ((𝐵𝐶) ∖ 𝐵))
79 uncom 3719 . . . . . . . . . . . . . . . . 17 (𝐵𝐶) = (𝐶𝐵)
8079difeq1i 3686 . . . . . . . . . . . . . . . 16 ((𝐵𝐶) ∖ 𝐵) = ((𝐶𝐵) ∖ 𝐵)
81 difun2 4000 . . . . . . . . . . . . . . . 16 ((𝐶𝐵) ∖ 𝐵) = (𝐶𝐵)
8280, 81eqtri 2632 . . . . . . . . . . . . . . 15 ((𝐵𝐶) ∖ 𝐵) = (𝐶𝐵)
83 difss 3699 . . . . . . . . . . . . . . 15 (𝐶𝐵) ⊆ 𝐶
8482, 83eqsstri 3598 . . . . . . . . . . . . . 14 ((𝐵𝐶) ∖ 𝐵) ⊆ 𝐶
8578, 84syl6ss 3580 . . . . . . . . . . . . 13 (((𝑧𝐵) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝑧𝐶)
86 simp3r 1083 . . . . . . . . . . . . 13 (((𝑧𝐵) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝑧 ≠ ∅)
8775, 38syl 17 . . . . . . . . . . . . 13 (((𝑧𝐵) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝑧 ∈ Fin)
88 elfir 8204 . . . . . . . . . . . . 13 ((𝐶𝐾 ∧ (𝑧𝐶𝑧 ≠ ∅ ∧ 𝑧 ∈ Fin)) → 𝑧 ∈ (fi‘𝐶))
8973, 85, 86, 87, 88syl13anc 1320 . . . . . . . . . . . 12 (((𝑧𝐵) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝑧 ∈ (fi‘𝐶))
90893mix2d 1230 . . . . . . . . . . 11 (((𝑧𝐵) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → ( 𝑧 ∈ (fi‘𝐵) ∨ 𝑧 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶) 𝑧 = (𝑥𝑦)))
91903expib 1260 . . . . . . . . . 10 ((𝑧𝐵) = ∅ → (((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → ( 𝑧 ∈ (fi‘𝐵) ∨ 𝑧 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶) 𝑧 = (𝑥𝑦))))
92 simp22 1088 . . . . . . . . . . . . 13 (((𝑧𝐶) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝐵𝐷)
93 simp1 1054 . . . . . . . . . . . . . . 15 (((𝑧𝐶) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → (𝑧𝐶) = ∅)
94 simp3l 1082 . . . . . . . . . . . . . . . 16 (((𝑧𝐶) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin))
95 reldisj 3972 . . . . . . . . . . . . . . . 16 (𝑧 ⊆ (𝐵𝐶) → ((𝑧𝐶) = ∅ ↔ 𝑧 ⊆ ((𝐵𝐶) ∖ 𝐶)))
9694, 56, 953syl 18 . . . . . . . . . . . . . . 15 (((𝑧𝐶) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → ((𝑧𝐶) = ∅ ↔ 𝑧 ⊆ ((𝐵𝐶) ∖ 𝐶)))
9793, 96mpbid 221 . . . . . . . . . . . . . 14 (((𝑧𝐶) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝑧 ⊆ ((𝐵𝐶) ∖ 𝐶))
98 difun2 4000 . . . . . . . . . . . . . . 15 ((𝐵𝐶) ∖ 𝐶) = (𝐵𝐶)
99 difss 3699 . . . . . . . . . . . . . . 15 (𝐵𝐶) ⊆ 𝐵
10098, 99eqsstri 3598 . . . . . . . . . . . . . 14 ((𝐵𝐶) ∖ 𝐶) ⊆ 𝐵
10197, 100syl6ss 3580 . . . . . . . . . . . . 13 (((𝑧𝐶) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝑧𝐵)
102 simp3r 1083 . . . . . . . . . . . . 13 (((𝑧𝐶) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝑧 ≠ ∅)
10394, 38syl 17 . . . . . . . . . . . . 13 (((𝑧𝐶) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝑧 ∈ Fin)
104 elfir 8204 . . . . . . . . . . . . 13 ((𝐵𝐷 ∧ (𝑧𝐵𝑧 ≠ ∅ ∧ 𝑧 ∈ Fin)) → 𝑧 ∈ (fi‘𝐵))
10592, 101, 102, 103, 104syl13anc 1320 . . . . . . . . . . . 12 (((𝑧𝐶) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → 𝑧 ∈ (fi‘𝐵))
1061053mix1d 1229 . . . . . . . . . . 11 (((𝑧𝐶) = ∅ ∧ (𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → ( 𝑧 ∈ (fi‘𝐵) ∨ 𝑧 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶) 𝑧 = (𝑥𝑦)))
1071063expib 1260 . . . . . . . . . 10 ((𝑧𝐶) = ∅ → (((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → ( 𝑧 ∈ (fi‘𝐵) ∨ 𝑧 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶) 𝑧 = (𝑥𝑦))))
10872, 91, 107pm2.61iine 2872 . . . . . . . . 9 (((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → ( 𝑧 ∈ (fi‘𝐵) ∨ 𝑧 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶) 𝑧 = (𝑥𝑦)))
109 eleq1 2676 . . . . . . . . . 10 (𝐴 = 𝑧 → (𝐴 ∈ (fi‘𝐵) ↔ 𝑧 ∈ (fi‘𝐵)))
110 eleq1 2676 . . . . . . . . . 10 (𝐴 = 𝑧 → (𝐴 ∈ (fi‘𝐶) ↔ 𝑧 ∈ (fi‘𝐶)))
111 eqeq1 2614 . . . . . . . . . . 11 (𝐴 = 𝑧 → (𝐴 = (𝑥𝑦) ↔ 𝑧 = (𝑥𝑦)))
1121112rexbidv 3039 . . . . . . . . . 10 (𝐴 = 𝑧 → (∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦) ↔ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶) 𝑧 = (𝑥𝑦)))
113109, 110, 1123orbi123d 1390 . . . . . . . . 9 (𝐴 = 𝑧 → ((𝐴 ∈ (fi‘𝐵) ∨ 𝐴 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦)) ↔ ( 𝑧 ∈ (fi‘𝐵) ∨ 𝑧 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶) 𝑧 = (𝑥𝑦))))
114108, 113syl5ibrcom 236 . . . . . . . 8 (((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ (𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin) ∧ 𝑧 ≠ ∅)) → (𝐴 = 𝑧 → (𝐴 ∈ (fi‘𝐵) ∨ 𝐴 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦))))
115114expr 641 . . . . . . 7 (((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ 𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin)) → (𝑧 ≠ ∅ → (𝐴 = 𝑧 → (𝐴 ∈ (fi‘𝐵) ∨ 𝐴 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦)))))
116115com23 84 . . . . . 6 (((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ 𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin)) → (𝐴 = 𝑧 → (𝑧 ≠ ∅ → (𝐴 ∈ (fi‘𝐵) ∨ 𝐴 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦)))))
11731, 116mpdd 42 . . . . 5 (((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) ∧ 𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin)) → (𝐴 = 𝑧 → (𝐴 ∈ (fi‘𝐵) ∨ 𝐴 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦))))
118117rexlimdva 3013 . . . 4 ((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) → (∃𝑧 ∈ (𝒫 (𝐵𝐶) ∩ Fin)𝐴 = 𝑧 → (𝐴 ∈ (fi‘𝐵) ∨ 𝐴 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦))))
11926, 118sylbid 229 . . 3 ((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) → (𝐴 ∈ (fi‘(𝐵𝐶)) → (𝐴 ∈ (fi‘𝐵) ∨ 𝐴 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦))))
120 ssun1 3738 . . . . . . 7 𝐵 ⊆ (𝐵𝐶)
121 fiss 8213 . . . . . . 7 (((𝐵𝐶) ∈ V ∧ 𝐵 ⊆ (𝐵𝐶)) → (fi‘𝐵) ⊆ (fi‘(𝐵𝐶)))
12223, 120, 121sylancl 693 . . . . . 6 ((𝐵𝐷𝐶𝐾) → (fi‘𝐵) ⊆ (fi‘(𝐵𝐶)))
1231223adant1 1072 . . . . 5 ((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) → (fi‘𝐵) ⊆ (fi‘(𝐵𝐶)))
124123sseld 3567 . . . 4 ((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) → (𝐴 ∈ (fi‘𝐵) → 𝐴 ∈ (fi‘(𝐵𝐶))))
125 ssun2 3739 . . . . . . 7 𝐶 ⊆ (𝐵𝐶)
126 fiss 8213 . . . . . . 7 (((𝐵𝐶) ∈ V ∧ 𝐶 ⊆ (𝐵𝐶)) → (fi‘𝐶) ⊆ (fi‘(𝐵𝐶)))
12723, 125, 126sylancl 693 . . . . . 6 ((𝐵𝐷𝐶𝐾) → (fi‘𝐶) ⊆ (fi‘(𝐵𝐶)))
1281273adant1 1072 . . . . 5 ((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) → (fi‘𝐶) ⊆ (fi‘(𝐵𝐶)))
129128sseld 3567 . . . 4 ((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) → (𝐴 ∈ (fi‘𝐶) → 𝐴 ∈ (fi‘(𝐵𝐶))))
130123sseld 3567 . . . . . . 7 ((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) → (𝑥 ∈ (fi‘𝐵) → 𝑥 ∈ (fi‘(𝐵𝐶))))
131128sseld 3567 . . . . . . 7 ((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) → (𝑦 ∈ (fi‘𝐶) → 𝑦 ∈ (fi‘(𝐵𝐶))))
132130, 131anim12d 584 . . . . . 6 ((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) → ((𝑥 ∈ (fi‘𝐵) ∧ 𝑦 ∈ (fi‘𝐶)) → (𝑥 ∈ (fi‘(𝐵𝐶)) ∧ 𝑦 ∈ (fi‘(𝐵𝐶)))))
133 fiin 8211 . . . . . . 7 ((𝑥 ∈ (fi‘(𝐵𝐶)) ∧ 𝑦 ∈ (fi‘(𝐵𝐶))) → (𝑥𝑦) ∈ (fi‘(𝐵𝐶)))
134 eleq1a 2683 . . . . . . 7 ((𝑥𝑦) ∈ (fi‘(𝐵𝐶)) → (𝐴 = (𝑥𝑦) → 𝐴 ∈ (fi‘(𝐵𝐶))))
135133, 134syl 17 . . . . . 6 ((𝑥 ∈ (fi‘(𝐵𝐶)) ∧ 𝑦 ∈ (fi‘(𝐵𝐶))) → (𝐴 = (𝑥𝑦) → 𝐴 ∈ (fi‘(𝐵𝐶))))
136132, 135syl6 34 . . . . 5 ((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) → ((𝑥 ∈ (fi‘𝐵) ∧ 𝑦 ∈ (fi‘𝐶)) → (𝐴 = (𝑥𝑦) → 𝐴 ∈ (fi‘(𝐵𝐶)))))
137136rexlimdvv 3019 . . . 4 ((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) → (∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦) → 𝐴 ∈ (fi‘(𝐵𝐶))))
138124, 129, 1373jaod 1384 . . 3 ((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) → ((𝐴 ∈ (fi‘𝐵) ∨ 𝐴 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦)) → 𝐴 ∈ (fi‘(𝐵𝐶))))
139119, 138impbid 201 . 2 ((𝐴 ∈ V ∧ 𝐵𝐷𝐶𝐾) → (𝐴 ∈ (fi‘(𝐵𝐶)) ↔ (𝐴 ∈ (fi‘𝐵) ∨ 𝐴 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦))))
1405, 21, 139pm5.21nd 939 1 ((𝐵𝐷𝐶𝐾) → (𝐴 ∈ (fi‘(𝐵𝐶)) ↔ (𝐴 ∈ (fi‘𝐵) ∨ 𝐴 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∨ w3o 1030   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∃wrex 2897  Vcvv 3173   ∖ cdif 3537   ∪ cun 3538   ∩ cin 3539   ⊆ wss 3540  ∅c0 3874  𝒫 cpw 4108  ∩ cint 4410  ‘cfv 5804  Fincfn 7841  ficfi 8199 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-fin 7845  df-fi 8200 This theorem is referenced by:  ordtbas2  20805  ordtbas  20806  fbunfip  21483  fmfnfmlem4  21571
 Copyright terms: Public domain W3C validator