Step | Hyp | Ref
| Expression |
1 | | fmfnfm.l |
. . . 4
⊢ (𝜑 → 𝐿 ∈ (Fil‘𝑋)) |
2 | | filelss 21466 |
. . . . 5
⊢ ((𝐿 ∈ (Fil‘𝑋) ∧ 𝑡 ∈ 𝐿) → 𝑡 ⊆ 𝑋) |
3 | 2 | ex 449 |
. . . 4
⊢ (𝐿 ∈ (Fil‘𝑋) → (𝑡 ∈ 𝐿 → 𝑡 ⊆ 𝑋)) |
4 | 1, 3 | syl 17 |
. . 3
⊢ (𝜑 → (𝑡 ∈ 𝐿 → 𝑡 ⊆ 𝑋)) |
5 | | fmfnfm.b |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ (fBas‘𝑌)) |
6 | | mptexg 6389 |
. . . . . . . . . . 11
⊢ (𝐿 ∈ (Fil‘𝑋) → (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∈ V) |
7 | | rnexg 6990 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∈ V → ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∈ V) |
8 | 6, 7 | syl 17 |
. . . . . . . . . 10
⊢ (𝐿 ∈ (Fil‘𝑋) → ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∈ V) |
9 | 1, 8 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∈ V) |
10 | | unexg 6857 |
. . . . . . . . 9
⊢ ((𝐵 ∈ (fBas‘𝑌) ∧ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∈ V) → (𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ∈ V) |
11 | 5, 9, 10 | syl2anc 691 |
. . . . . . . 8
⊢ (𝜑 → (𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ∈ V) |
12 | | ssfii 8208 |
. . . . . . . . 9
⊢ ((𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ∈ V → (𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ⊆ (fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))) |
13 | 12 | unssbd 3753 |
. . . . . . . 8
⊢ ((𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ∈ V → ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ⊆ (fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))) |
14 | 11, 13 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ⊆ (fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))) |
15 | 14 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐿) → ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ⊆ (fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))) |
16 | | eqid 2610 |
. . . . . . . . 9
⊢ (◡𝐹 “ 𝑡) = (◡𝐹 “ 𝑡) |
17 | | imaeq2 5381 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑡 → (◡𝐹 “ 𝑥) = (◡𝐹 “ 𝑡)) |
18 | 17 | eqeq2d 2620 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑡 → ((◡𝐹 “ 𝑡) = (◡𝐹 “ 𝑥) ↔ (◡𝐹 “ 𝑡) = (◡𝐹 “ 𝑡))) |
19 | 18 | rspcev 3282 |
. . . . . . . . 9
⊢ ((𝑡 ∈ 𝐿 ∧ (◡𝐹 “ 𝑡) = (◡𝐹 “ 𝑡)) → ∃𝑥 ∈ 𝐿 (◡𝐹 “ 𝑡) = (◡𝐹 “ 𝑥)) |
20 | 16, 19 | mpan2 703 |
. . . . . . . 8
⊢ (𝑡 ∈ 𝐿 → ∃𝑥 ∈ 𝐿 (◡𝐹 “ 𝑡) = (◡𝐹 “ 𝑥)) |
21 | 20 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐿) → ∃𝑥 ∈ 𝐿 (◡𝐹 “ 𝑡) = (◡𝐹 “ 𝑥)) |
22 | | elfvdm 6130 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ (fBas‘𝑌) → 𝑌 ∈ dom fBas) |
23 | 5, 22 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌 ∈ dom fBas) |
24 | | cnvimass 5404 |
. . . . . . . . . . 11
⊢ (◡𝐹 “ 𝑡) ⊆ dom 𝐹 |
25 | | fmfnfm.f |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:𝑌⟶𝑋) |
26 | | fdm 5964 |
. . . . . . . . . . . 12
⊢ (𝐹:𝑌⟶𝑋 → dom 𝐹 = 𝑌) |
27 | 25, 26 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → dom 𝐹 = 𝑌) |
28 | 24, 27 | syl5sseq 3616 |
. . . . . . . . . 10
⊢ (𝜑 → (◡𝐹 “ 𝑡) ⊆ 𝑌) |
29 | 23, 28 | ssexd 4733 |
. . . . . . . . 9
⊢ (𝜑 → (◡𝐹 “ 𝑡) ∈ V) |
30 | 29 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐿) → (◡𝐹 “ 𝑡) ∈ V) |
31 | | eqid 2610 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) = (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) |
32 | 31 | elrnmpt 5293 |
. . . . . . . 8
⊢ ((◡𝐹 “ 𝑡) ∈ V → ((◡𝐹 “ 𝑡) ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 (◡𝐹 “ 𝑡) = (◡𝐹 “ 𝑥))) |
33 | 30, 32 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐿) → ((◡𝐹 “ 𝑡) ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 (◡𝐹 “ 𝑡) = (◡𝐹 “ 𝑥))) |
34 | 21, 33 | mpbird 246 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐿) → (◡𝐹 “ 𝑡) ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) |
35 | 15, 34 | sseldd 3569 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐿) → (◡𝐹 “ 𝑡) ∈ (fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))) |
36 | | ffun 5961 |
. . . . . . . 8
⊢ (𝐹:𝑌⟶𝑋 → Fun 𝐹) |
37 | | ssid 3587 |
. . . . . . . 8
⊢ (◡𝐹 “ 𝑡) ⊆ (◡𝐹 “ 𝑡) |
38 | | funimass2 5886 |
. . . . . . . 8
⊢ ((Fun
𝐹 ∧ (◡𝐹 “ 𝑡) ⊆ (◡𝐹 “ 𝑡)) → (𝐹 “ (◡𝐹 “ 𝑡)) ⊆ 𝑡) |
39 | 36, 37, 38 | sylancl 693 |
. . . . . . 7
⊢ (𝐹:𝑌⟶𝑋 → (𝐹 “ (◡𝐹 “ 𝑡)) ⊆ 𝑡) |
40 | 25, 39 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐹 “ (◡𝐹 “ 𝑡)) ⊆ 𝑡) |
41 | 40 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐿) → (𝐹 “ (◡𝐹 “ 𝑡)) ⊆ 𝑡) |
42 | | imaeq2 5381 |
. . . . . . 7
⊢ (𝑠 = (◡𝐹 “ 𝑡) → (𝐹 “ 𝑠) = (𝐹 “ (◡𝐹 “ 𝑡))) |
43 | 42 | sseq1d 3595 |
. . . . . 6
⊢ (𝑠 = (◡𝐹 “ 𝑡) → ((𝐹 “ 𝑠) ⊆ 𝑡 ↔ (𝐹 “ (◡𝐹 “ 𝑡)) ⊆ 𝑡)) |
44 | 43 | rspcev 3282 |
. . . . 5
⊢ (((◡𝐹 “ 𝑡) ∈ (fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)))) ∧ (𝐹 “ (◡𝐹 “ 𝑡)) ⊆ 𝑡) → ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))(𝐹 “ 𝑠) ⊆ 𝑡) |
45 | 35, 41, 44 | syl2anc 691 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐿) → ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))(𝐹 “ 𝑠) ⊆ 𝑡) |
46 | 45 | ex 449 |
. . 3
⊢ (𝜑 → (𝑡 ∈ 𝐿 → ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))(𝐹 “ 𝑠) ⊆ 𝑡)) |
47 | 4, 46 | jcad 554 |
. 2
⊢ (𝜑 → (𝑡 ∈ 𝐿 → (𝑡 ⊆ 𝑋 ∧ ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))(𝐹 “ 𝑠) ⊆ 𝑡))) |
48 | | elfiun 8219 |
. . . . . . 7
⊢ ((𝐵 ∈ (fBas‘𝑌) ∧ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∈ V) → (𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)))) ↔ (𝑠 ∈ (fi‘𝐵) ∨ 𝑠 ∈ (fi‘ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ∨ ∃𝑧 ∈ (fi‘𝐵)∃𝑤 ∈ (fi‘ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)))𝑠 = (𝑧 ∩ 𝑤)))) |
49 | 5, 9, 48 | syl2anc 691 |
. . . . . 6
⊢ (𝜑 → (𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)))) ↔ (𝑠 ∈ (fi‘𝐵) ∨ 𝑠 ∈ (fi‘ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ∨ ∃𝑧 ∈ (fi‘𝐵)∃𝑤 ∈ (fi‘ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)))𝑠 = (𝑧 ∩ 𝑤)))) |
50 | | fmfnfm.fm |
. . . . . . . 8
⊢ (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿) |
51 | 5, 1, 25, 50 | fmfnfmlem1 21568 |
. . . . . . 7
⊢ (𝜑 → (𝑠 ∈ (fi‘𝐵) → ((𝐹 “ 𝑠) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿)))) |
52 | 5, 1, 25, 50 | fmfnfmlem3 21570 |
. . . . . . . . 9
⊢ (𝜑 → (fi‘ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) = ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) |
53 | 52 | eleq2d 2673 |
. . . . . . . 8
⊢ (𝜑 → (𝑠 ∈ (fi‘ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ↔ 𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)))) |
54 | | vex 3176 |
. . . . . . . . . 10
⊢ 𝑠 ∈ V |
55 | 31 | elrnmpt 5293 |
. . . . . . . . . 10
⊢ (𝑠 ∈ V → (𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 𝑠 = (◡𝐹 “ 𝑥))) |
56 | 54, 55 | ax-mp 5 |
. . . . . . . . 9
⊢ (𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 𝑠 = (◡𝐹 “ 𝑥)) |
57 | 5, 1, 25, 50 | fmfnfmlem2 21569 |
. . . . . . . . 9
⊢ (𝜑 → (∃𝑥 ∈ 𝐿 𝑠 = (◡𝐹 “ 𝑥) → ((𝐹 “ 𝑠) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿)))) |
58 | 56, 57 | syl5bi 231 |
. . . . . . . 8
⊢ (𝜑 → (𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) → ((𝐹 “ 𝑠) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿)))) |
59 | 53, 58 | sylbid 229 |
. . . . . . 7
⊢ (𝜑 → (𝑠 ∈ (fi‘ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) → ((𝐹 “ 𝑠) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿)))) |
60 | 52 | eleq2d 2673 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑤 ∈ (fi‘ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ↔ 𝑤 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)))) |
61 | | vex 3176 |
. . . . . . . . . . . . . 14
⊢ 𝑤 ∈ V |
62 | 31 | elrnmpt 5293 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈ V → (𝑤 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 𝑤 = (◡𝐹 “ 𝑥))) |
63 | 61, 62 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 𝑤 = (◡𝐹 “ 𝑥)) |
64 | 60, 63 | syl6bb 275 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑤 ∈ (fi‘ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ↔ ∃𝑥 ∈ 𝐿 𝑤 = (◡𝐹 “ 𝑥))) |
65 | 64 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (fi‘𝐵)) → (𝑤 ∈ (fi‘ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ↔ ∃𝑥 ∈ 𝐿 𝑤 = (◡𝐹 “ 𝑥))) |
66 | | fbssfi 21451 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ (fBas‘𝑌) ∧ 𝑧 ∈ (fi‘𝐵)) → ∃𝑠 ∈ 𝐵 𝑠 ⊆ 𝑧) |
67 | 5, 66 | sylan 487 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (fi‘𝐵)) → ∃𝑠 ∈ 𝐵 𝑠 ⊆ 𝑧) |
68 | 1 | ad3antrrr 762 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧)) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (𝑧 ∩ (◡𝐹 “ 𝑥))) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) → 𝐿 ∈ (Fil‘𝑋)) |
69 | 1 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧)) → 𝐿 ∈ (Fil‘𝑋)) |
70 | 50 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐵) → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿) |
71 | | filtop 21469 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝐿 ∈ (Fil‘𝑋) → 𝑋 ∈ 𝐿) |
72 | 1, 71 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → 𝑋 ∈ 𝐿) |
73 | 72, 5, 25 | 3jca 1235 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (𝑋 ∈ 𝐿 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋)) |
74 | 73 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐵) → (𝑋 ∈ 𝐿 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋)) |
75 | | ssfg 21486 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝐵 ∈ (fBas‘𝑌) → 𝐵 ⊆ (𝑌filGen𝐵)) |
76 | 5, 75 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝐵 ⊆ (𝑌filGen𝐵)) |
77 | 76 | sselda 3568 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐵) → 𝑠 ∈ (𝑌filGen𝐵)) |
78 | | eqid 2610 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑌filGen𝐵) = (𝑌filGen𝐵) |
79 | 78 | imaelfm 21565 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑋 ∈ 𝐿 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑠 ∈ (𝑌filGen𝐵)) → (𝐹 “ 𝑠) ∈ ((𝑋 FilMap 𝐹)‘𝐵)) |
80 | 74, 77, 79 | syl2anc 691 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐵) → (𝐹 “ 𝑠) ∈ ((𝑋 FilMap 𝐹)‘𝐵)) |
81 | 70, 80 | sseldd 3569 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐵) → (𝐹 “ 𝑠) ∈ 𝐿) |
82 | 81 | adantrr 749 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧)) → (𝐹 “ 𝑠) ∈ 𝐿) |
83 | 69, 82 | jca 553 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧)) → (𝐿 ∈ (Fil‘𝑋) ∧ (𝐹 “ 𝑠) ∈ 𝐿)) |
84 | | filin 21468 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐿 ∈ (Fil‘𝑋) ∧ (𝐹 “ 𝑠) ∈ 𝐿 ∧ 𝑥 ∈ 𝐿) → ((𝐹 “ 𝑠) ∩ 𝑥) ∈ 𝐿) |
85 | 84 | 3expa 1257 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐿 ∈ (Fil‘𝑋) ∧ (𝐹 “ 𝑠) ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) → ((𝐹 “ 𝑠) ∩ 𝑥) ∈ 𝐿) |
86 | 83, 85 | sylan 487 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧)) ∧ 𝑥 ∈ 𝐿) → ((𝐹 “ 𝑠) ∩ 𝑥) ∈ 𝐿) |
87 | 86 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧)) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (𝑧 ∩ (◡𝐹 “ 𝑥))) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) → ((𝐹 “ 𝑠) ∩ 𝑥) ∈ 𝐿) |
88 | | simprr 792 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧)) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (𝑧 ∩ (◡𝐹 “ 𝑥))) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) → 𝑡 ⊆ 𝑋) |
89 | | elin 3758 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑤 ∈ ((𝐹 “ 𝑠) ∩ 𝑥) ↔ (𝑤 ∈ (𝐹 “ 𝑠) ∧ 𝑤 ∈ 𝑥)) |
90 | 25, 36 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → Fun 𝐹) |
91 | | fvelima 6158 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((Fun
𝐹 ∧ 𝑤 ∈ (𝐹 “ 𝑠)) → ∃𝑦 ∈ 𝑠 (𝐹‘𝑦) = 𝑤) |
92 | 91 | ex 449 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (Fun
𝐹 → (𝑤 ∈ (𝐹 “ 𝑠) → ∃𝑦 ∈ 𝑠 (𝐹‘𝑦) = 𝑤)) |
93 | 90, 92 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (𝑤 ∈ (𝐹 “ 𝑠) → ∃𝑦 ∈ 𝑠 (𝐹‘𝑦) = 𝑤)) |
94 | 93 | ad3antrrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧)) ∧ 𝑥 ∈ 𝐿) ∧ 𝑡 ⊆ 𝑋) → (𝑤 ∈ (𝐹 “ 𝑠) → ∃𝑦 ∈ 𝑠 (𝐹‘𝑦) = 𝑤)) |
95 | 90 | ad3antrrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ (𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧)) ∧ 𝑥 ∈ 𝐿) ∧ (𝑡 ⊆ 𝑋 ∧ (𝑦 ∈ 𝑠 ∧ (𝐹‘𝑦) ∈ 𝑥))) → Fun 𝐹) |
96 | | simplrr 797 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ (𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧)) ∧ 𝑥 ∈ 𝐿) → 𝑠 ⊆ 𝑧) |
97 | | simprl 790 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑡 ⊆ 𝑋 ∧ (𝑦 ∈ 𝑠 ∧ (𝐹‘𝑦) ∈ 𝑥)) → 𝑦 ∈ 𝑠) |
98 | | ssel2 3563 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑠 ⊆ 𝑧 ∧ 𝑦 ∈ 𝑠) → 𝑦 ∈ 𝑧) |
99 | 96, 97, 98 | syl2an 493 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ (𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧)) ∧ 𝑥 ∈ 𝐿) ∧ (𝑡 ⊆ 𝑋 ∧ (𝑦 ∈ 𝑠 ∧ (𝐹‘𝑦) ∈ 𝑥))) → 𝑦 ∈ 𝑧) |
100 | 90 | ad2antrr 758 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ (𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧)) ∧ 𝑦 ∈ 𝑠) → Fun 𝐹) |
101 | | fbelss 21447 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝐵 ∈ (fBas‘𝑌) ∧ 𝑠 ∈ 𝐵) → 𝑠 ⊆ 𝑌) |
102 | 5, 101 | sylan 487 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐵) → 𝑠 ⊆ 𝑌) |
103 | 27 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐵) → dom 𝐹 = 𝑌) |
104 | 102, 103 | sseqtr4d 3605 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐵) → 𝑠 ⊆ dom 𝐹) |
105 | 104 | adantrr 749 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝜑 ∧ (𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧)) → 𝑠 ⊆ dom 𝐹) |
106 | 105 | sselda 3568 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ (𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧)) ∧ 𝑦 ∈ 𝑠) → 𝑦 ∈ dom 𝐹) |
107 | | fvimacnv 6240 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((Fun
𝐹 ∧ 𝑦 ∈ dom 𝐹) → ((𝐹‘𝑦) ∈ 𝑥 ↔ 𝑦 ∈ (◡𝐹 “ 𝑥))) |
108 | 100, 106,
107 | syl2anc 691 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ (𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧)) ∧ 𝑦 ∈ 𝑠) → ((𝐹‘𝑦) ∈ 𝑥 ↔ 𝑦 ∈ (◡𝐹 “ 𝑥))) |
109 | 108 | biimpd 218 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ (𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧)) ∧ 𝑦 ∈ 𝑠) → ((𝐹‘𝑦) ∈ 𝑥 → 𝑦 ∈ (◡𝐹 “ 𝑥))) |
110 | 109 | impr 647 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ (𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧)) ∧ (𝑦 ∈ 𝑠 ∧ (𝐹‘𝑦) ∈ 𝑥)) → 𝑦 ∈ (◡𝐹 “ 𝑥)) |
111 | 110 | ad2ant2rl 781 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ (𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧)) ∧ 𝑥 ∈ 𝐿) ∧ (𝑡 ⊆ 𝑋 ∧ (𝑦 ∈ 𝑠 ∧ (𝐹‘𝑦) ∈ 𝑥))) → 𝑦 ∈ (◡𝐹 “ 𝑥)) |
112 | 99, 111 | elind 3760 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ (𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧)) ∧ 𝑥 ∈ 𝐿) ∧ (𝑡 ⊆ 𝑋 ∧ (𝑦 ∈ 𝑠 ∧ (𝐹‘𝑦) ∈ 𝑥))) → 𝑦 ∈ (𝑧 ∩ (◡𝐹 “ 𝑥))) |
113 | | inss2 3796 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑧 ∩ (◡𝐹 “ 𝑥)) ⊆ (◡𝐹 “ 𝑥) |
114 | | cnvimass 5404 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (◡𝐹 “ 𝑥) ⊆ dom 𝐹 |
115 | 113, 114 | sstri 3577 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑧 ∩ (◡𝐹 “ 𝑥)) ⊆ dom 𝐹 |
116 | | funfvima2 6397 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((Fun
𝐹 ∧ (𝑧 ∩ (◡𝐹 “ 𝑥)) ⊆ dom 𝐹) → (𝑦 ∈ (𝑧 ∩ (◡𝐹 “ 𝑥)) → (𝐹‘𝑦) ∈ (𝐹 “ (𝑧 ∩ (◡𝐹 “ 𝑥))))) |
117 | 115, 116 | mpan2 703 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (Fun
𝐹 → (𝑦 ∈ (𝑧 ∩ (◡𝐹 “ 𝑥)) → (𝐹‘𝑦) ∈ (𝐹 “ (𝑧 ∩ (◡𝐹 “ 𝑥))))) |
118 | 95, 112, 117 | sylc 63 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ (𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧)) ∧ 𝑥 ∈ 𝐿) ∧ (𝑡 ⊆ 𝑋 ∧ (𝑦 ∈ 𝑠 ∧ (𝐹‘𝑦) ∈ 𝑥))) → (𝐹‘𝑦) ∈ (𝐹 “ (𝑧 ∩ (◡𝐹 “ 𝑥)))) |
119 | 118 | anassrs 678 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝜑 ∧ (𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧)) ∧ 𝑥 ∈ 𝐿) ∧ 𝑡 ⊆ 𝑋) ∧ (𝑦 ∈ 𝑠 ∧ (𝐹‘𝑦) ∈ 𝑥)) → (𝐹‘𝑦) ∈ (𝐹 “ (𝑧 ∩ (◡𝐹 “ 𝑥)))) |
120 | 119 | expr 641 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝜑 ∧ (𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧)) ∧ 𝑥 ∈ 𝐿) ∧ 𝑡 ⊆ 𝑋) ∧ 𝑦 ∈ 𝑠) → ((𝐹‘𝑦) ∈ 𝑥 → (𝐹‘𝑦) ∈ (𝐹 “ (𝑧 ∩ (◡𝐹 “ 𝑥))))) |
121 | | eleq1 2676 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐹‘𝑦) = 𝑤 → ((𝐹‘𝑦) ∈ 𝑥 ↔ 𝑤 ∈ 𝑥)) |
122 | | eleq1 2676 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐹‘𝑦) = 𝑤 → ((𝐹‘𝑦) ∈ (𝐹 “ (𝑧 ∩ (◡𝐹 “ 𝑥))) ↔ 𝑤 ∈ (𝐹 “ (𝑧 ∩ (◡𝐹 “ 𝑥))))) |
123 | 121, 122 | imbi12d 333 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐹‘𝑦) = 𝑤 → (((𝐹‘𝑦) ∈ 𝑥 → (𝐹‘𝑦) ∈ (𝐹 “ (𝑧 ∩ (◡𝐹 “ 𝑥)))) ↔ (𝑤 ∈ 𝑥 → 𝑤 ∈ (𝐹 “ (𝑧 ∩ (◡𝐹 “ 𝑥)))))) |
124 | 120, 123 | syl5ibcom 234 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝜑 ∧ (𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧)) ∧ 𝑥 ∈ 𝐿) ∧ 𝑡 ⊆ 𝑋) ∧ 𝑦 ∈ 𝑠) → ((𝐹‘𝑦) = 𝑤 → (𝑤 ∈ 𝑥 → 𝑤 ∈ (𝐹 “ (𝑧 ∩ (◡𝐹 “ 𝑥)))))) |
125 | 124 | rexlimdva 3013 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧)) ∧ 𝑥 ∈ 𝐿) ∧ 𝑡 ⊆ 𝑋) → (∃𝑦 ∈ 𝑠 (𝐹‘𝑦) = 𝑤 → (𝑤 ∈ 𝑥 → 𝑤 ∈ (𝐹 “ (𝑧 ∩ (◡𝐹 “ 𝑥)))))) |
126 | 94, 125 | syld 46 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧)) ∧ 𝑥 ∈ 𝐿) ∧ 𝑡 ⊆ 𝑋) → (𝑤 ∈ (𝐹 “ 𝑠) → (𝑤 ∈ 𝑥 → 𝑤 ∈ (𝐹 “ (𝑧 ∩ (◡𝐹 “ 𝑥)))))) |
127 | 126 | impd 446 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ (𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧)) ∧ 𝑥 ∈ 𝐿) ∧ 𝑡 ⊆ 𝑋) → ((𝑤 ∈ (𝐹 “ 𝑠) ∧ 𝑤 ∈ 𝑥) → 𝑤 ∈ (𝐹 “ (𝑧 ∩ (◡𝐹 “ 𝑥))))) |
128 | 89, 127 | syl5bi 231 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ (𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧)) ∧ 𝑥 ∈ 𝐿) ∧ 𝑡 ⊆ 𝑋) → (𝑤 ∈ ((𝐹 “ 𝑠) ∩ 𝑥) → 𝑤 ∈ (𝐹 “ (𝑧 ∩ (◡𝐹 “ 𝑥))))) |
129 | 128 | adantrl 748 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ (𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧)) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (𝑧 ∩ (◡𝐹 “ 𝑥))) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) → (𝑤 ∈ ((𝐹 “ 𝑠) ∩ 𝑥) → 𝑤 ∈ (𝐹 “ (𝑧 ∩ (◡𝐹 “ 𝑥))))) |
130 | 129 | ssrdv 3574 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧)) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (𝑧 ∩ (◡𝐹 “ 𝑥))) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) → ((𝐹 “ 𝑠) ∩ 𝑥) ⊆ (𝐹 “ (𝑧 ∩ (◡𝐹 “ 𝑥)))) |
131 | | simprl 790 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧)) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (𝑧 ∩ (◡𝐹 “ 𝑥))) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) → (𝐹 “ (𝑧 ∩ (◡𝐹 “ 𝑥))) ⊆ 𝑡) |
132 | 130, 131 | sstrd 3578 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧)) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (𝑧 ∩ (◡𝐹 “ 𝑥))) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) → ((𝐹 “ 𝑠) ∩ 𝑥) ⊆ 𝑡) |
133 | | filss 21467 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐿 ∈ (Fil‘𝑋) ∧ (((𝐹 “ 𝑠) ∩ 𝑥) ∈ 𝐿 ∧ 𝑡 ⊆ 𝑋 ∧ ((𝐹 “ 𝑠) ∩ 𝑥) ⊆ 𝑡)) → 𝑡 ∈ 𝐿) |
134 | 68, 87, 88, 132, 133 | syl13anc 1320 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧)) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (𝑧 ∩ (◡𝐹 “ 𝑥))) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) → 𝑡 ∈ 𝐿) |
135 | 134 | exp32 629 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧)) ∧ 𝑥 ∈ 𝐿) → ((𝐹 “ (𝑧 ∩ (◡𝐹 “ 𝑥))) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿))) |
136 | | ineq2 3770 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 = (◡𝐹 “ 𝑥) → (𝑧 ∩ 𝑤) = (𝑧 ∩ (◡𝐹 “ 𝑥))) |
137 | 136 | imaeq2d 5385 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = (◡𝐹 “ 𝑥) → (𝐹 “ (𝑧 ∩ 𝑤)) = (𝐹 “ (𝑧 ∩ (◡𝐹 “ 𝑥)))) |
138 | 137 | sseq1d 3595 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = (◡𝐹 “ 𝑥) → ((𝐹 “ (𝑧 ∩ 𝑤)) ⊆ 𝑡 ↔ (𝐹 “ (𝑧 ∩ (◡𝐹 “ 𝑥))) ⊆ 𝑡)) |
139 | 138 | imbi1d 330 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = (◡𝐹 “ 𝑥) → (((𝐹 “ (𝑧 ∩ 𝑤)) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿)) ↔ ((𝐹 “ (𝑧 ∩ (◡𝐹 “ 𝑥))) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿)))) |
140 | 135, 139 | syl5ibrcom 236 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧)) ∧ 𝑥 ∈ 𝐿) → (𝑤 = (◡𝐹 “ 𝑥) → ((𝐹 “ (𝑧 ∩ 𝑤)) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿)))) |
141 | 140 | rexlimdva 3013 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑠 ∈ 𝐵 ∧ 𝑠 ⊆ 𝑧)) → (∃𝑥 ∈ 𝐿 𝑤 = (◡𝐹 “ 𝑥) → ((𝐹 “ (𝑧 ∩ 𝑤)) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿)))) |
142 | 141 | rexlimdvaa 3014 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (∃𝑠 ∈ 𝐵 𝑠 ⊆ 𝑧 → (∃𝑥 ∈ 𝐿 𝑤 = (◡𝐹 “ 𝑥) → ((𝐹 “ (𝑧 ∩ 𝑤)) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿))))) |
143 | 142 | imp 444 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ∃𝑠 ∈ 𝐵 𝑠 ⊆ 𝑧) → (∃𝑥 ∈ 𝐿 𝑤 = (◡𝐹 “ 𝑥) → ((𝐹 “ (𝑧 ∩ 𝑤)) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿)))) |
144 | 67, 143 | syldan 486 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (fi‘𝐵)) → (∃𝑥 ∈ 𝐿 𝑤 = (◡𝐹 “ 𝑥) → ((𝐹 “ (𝑧 ∩ 𝑤)) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿)))) |
145 | 65, 144 | sylbid 229 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (fi‘𝐵)) → (𝑤 ∈ (fi‘ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) → ((𝐹 “ (𝑧 ∩ 𝑤)) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿)))) |
146 | 145 | impr 647 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑧 ∈ (fi‘𝐵) ∧ 𝑤 ∈ (fi‘ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))) → ((𝐹 “ (𝑧 ∩ 𝑤)) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿))) |
147 | | imaeq2 5381 |
. . . . . . . . . . 11
⊢ (𝑠 = (𝑧 ∩ 𝑤) → (𝐹 “ 𝑠) = (𝐹 “ (𝑧 ∩ 𝑤))) |
148 | 147 | sseq1d 3595 |
. . . . . . . . . 10
⊢ (𝑠 = (𝑧 ∩ 𝑤) → ((𝐹 “ 𝑠) ⊆ 𝑡 ↔ (𝐹 “ (𝑧 ∩ 𝑤)) ⊆ 𝑡)) |
149 | 148 | imbi1d 330 |
. . . . . . . . 9
⊢ (𝑠 = (𝑧 ∩ 𝑤) → (((𝐹 “ 𝑠) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿)) ↔ ((𝐹 “ (𝑧 ∩ 𝑤)) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿)))) |
150 | 146, 149 | syl5ibrcom 236 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑧 ∈ (fi‘𝐵) ∧ 𝑤 ∈ (fi‘ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))) → (𝑠 = (𝑧 ∩ 𝑤) → ((𝐹 “ 𝑠) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿)))) |
151 | 150 | rexlimdvva 3020 |
. . . . . . 7
⊢ (𝜑 → (∃𝑧 ∈ (fi‘𝐵)∃𝑤 ∈ (fi‘ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)))𝑠 = (𝑧 ∩ 𝑤) → ((𝐹 “ 𝑠) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿)))) |
152 | 51, 59, 151 | 3jaod 1384 |
. . . . . 6
⊢ (𝜑 → ((𝑠 ∈ (fi‘𝐵) ∨ 𝑠 ∈ (fi‘ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ∨ ∃𝑧 ∈ (fi‘𝐵)∃𝑤 ∈ (fi‘ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)))𝑠 = (𝑧 ∩ 𝑤)) → ((𝐹 “ 𝑠) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿)))) |
153 | 49, 152 | sylbid 229 |
. . . . 5
⊢ (𝜑 → (𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)))) → ((𝐹 “ 𝑠) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿)))) |
154 | 153 | rexlimdv 3012 |
. . . 4
⊢ (𝜑 → (∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))(𝐹 “ 𝑠) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿))) |
155 | 154 | com23 84 |
. . 3
⊢ (𝜑 → (𝑡 ⊆ 𝑋 → (∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))(𝐹 “ 𝑠) ⊆ 𝑡 → 𝑡 ∈ 𝐿))) |
156 | 155 | impd 446 |
. 2
⊢ (𝜑 → ((𝑡 ⊆ 𝑋 ∧ ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))(𝐹 “ 𝑠) ⊆ 𝑡) → 𝑡 ∈ 𝐿)) |
157 | 47, 156 | impbid 201 |
1
⊢ (𝜑 → (𝑡 ∈ 𝐿 ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))(𝐹 “ 𝑠) ⊆ 𝑡))) |