Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  3mix1d Structured version   Visualization version   GIF version

Theorem 3mix1d 1229
 Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.)
Hypothesis
Ref Expression
3mixd.1 (𝜑𝜓)
Assertion
Ref Expression
3mix1d (𝜑 → (𝜓𝜒𝜃))

Proof of Theorem 3mix1d
StepHypRef Expression
1 3mixd.1 . 2 (𝜑𝜓)
2 3mix1 1223 . 2 (𝜓 → (𝜓𝜒𝜃))
31, 2syl 17 1 (𝜑 → (𝜓𝜒𝜃))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∨ w3o 1030 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 196  df-or 384  df-3or 1032 This theorem is referenced by:  f1dom3fv3dif  6425  f1dom3el3dif  6426  elfiun  8219  lcmfunsnlem2lem2  15190  estrreslem2  16601  ostth  25128  btwncolg1  25250  hlln  25302  btwnlng1  25314  sltsolem1  31067  nodense  31088  colineartriv1  31344  fnwe2lem3  36640  prinfzo0  40363
 Copyright terms: Public domain W3C validator