MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfiun Structured version   Unicode version

Theorem elfiun 7892
Description: A finite intersection of elements taken from a union of collections. (Contributed by Jeff Hankins, 15-Nov-2009.) (Proof shortened by Mario Carneiro, 26-Nov-2013.)
Assertion
Ref Expression
elfiun  |-  ( ( B  e.  D  /\  C  e.  K )  ->  ( A  e.  ( fi `  ( B  u.  C ) )  <-> 
( A  e.  ( fi `  B )  \/  A  e.  ( fi `  C )  \/  E. x  e.  ( fi `  B
) E. y  e.  ( fi `  C
) A  =  ( x  i^i  y ) ) ) )
Distinct variable groups:    x, y, A    x, B, y    x, C, y    x, D, y   
x, K, y

Proof of Theorem elfiun
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elex 3104 . . . 4  |-  ( A  e.  ( fi `  ( B  u.  C
) )  ->  A  e.  _V )
21adantl 466 . . 3  |-  ( ( ( B  e.  D  /\  C  e.  K
)  /\  A  e.  ( fi `  ( B  u.  C ) ) )  ->  A  e.  _V )
3 simpll 753 . . 3  |-  ( ( ( B  e.  D  /\  C  e.  K
)  /\  A  e.  ( fi `  ( B  u.  C ) ) )  ->  B  e.  D )
4 simplr 755 . . 3  |-  ( ( ( B  e.  D  /\  C  e.  K
)  /\  A  e.  ( fi `  ( B  u.  C ) ) )  ->  C  e.  K )
52, 3, 43jca 1177 . 2  |-  ( ( ( B  e.  D  /\  C  e.  K
)  /\  A  e.  ( fi `  ( B  u.  C ) ) )  ->  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K ) )
6 elex 3104 . . . . . 6  |-  ( A  e.  ( fi `  B )  ->  A  e.  _V )
763anim1i 1183 . . . . 5  |-  ( ( A  e.  ( fi
`  B )  /\  B  e.  D  /\  C  e.  K )  ->  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )
)
873expib 1200 . . . 4  |-  ( A  e.  ( fi `  B )  ->  (
( B  e.  D  /\  C  e.  K
)  ->  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K ) ) )
9 elex 3104 . . . . . 6  |-  ( A  e.  ( fi `  C )  ->  A  e.  _V )
1093anim1i 1183 . . . . 5  |-  ( ( A  e.  ( fi
`  C )  /\  B  e.  D  /\  C  e.  K )  ->  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )
)
11103expib 1200 . . . 4  |-  ( A  e.  ( fi `  C )  ->  (
( B  e.  D  /\  C  e.  K
)  ->  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K ) ) )
12 vex 3098 . . . . . . . . . 10  |-  x  e. 
_V
1312inex1 4578 . . . . . . . . 9  |-  ( x  i^i  y )  e. 
_V
14 eleq1 2515 . . . . . . . . 9  |-  ( A  =  ( x  i^i  y )  ->  ( A  e.  _V  <->  ( x  i^i  y )  e.  _V ) )
1513, 14mpbiri 233 . . . . . . . 8  |-  ( A  =  ( x  i^i  y )  ->  A  e.  _V )
1615a1i 11 . . . . . . 7  |-  ( ( x  e.  ( fi
`  B )  /\  y  e.  ( fi `  C ) )  -> 
( A  =  ( x  i^i  y )  ->  A  e.  _V ) )
1716rexlimivv 2940 . . . . . 6  |-  ( E. x  e.  ( fi
`  B ) E. y  e.  ( fi
`  C ) A  =  ( x  i^i  y )  ->  A  e.  _V )
18173anim1i 1183 . . . . 5  |-  ( ( E. x  e.  ( fi `  B ) E. y  e.  ( fi `  C ) A  =  ( x  i^i  y )  /\  B  e.  D  /\  C  e.  K )  ->  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )
)
19183expib 1200 . . . 4  |-  ( E. x  e.  ( fi
`  B ) E. y  e.  ( fi
`  C ) A  =  ( x  i^i  y )  ->  (
( B  e.  D  /\  C  e.  K
)  ->  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K ) ) )
208, 11, 193jaoi 1292 . . 3  |-  ( ( A  e.  ( fi
`  B )  \/  A  e.  ( fi
`  C )  \/ 
E. x  e.  ( fi `  B ) E. y  e.  ( fi `  C ) A  =  ( x  i^i  y ) )  ->  ( ( B  e.  D  /\  C  e.  K )  ->  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K ) ) )
2120impcom 430 . 2  |-  ( ( ( B  e.  D  /\  C  e.  K
)  /\  ( A  e.  ( fi `  B
)  \/  A  e.  ( fi `  C
)  \/  E. x  e.  ( fi `  B
) E. y  e.  ( fi `  C
) A  =  ( x  i^i  y ) ) )  ->  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K ) )
22 simp1 997 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  ->  A  e.  _V )
23 unexg 6586 . . . . . 6  |-  ( ( B  e.  D  /\  C  e.  K )  ->  ( B  u.  C
)  e.  _V )
24233adant1 1015 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  ->  ( B  u.  C
)  e.  _V )
25 elfi 7875 . . . . 5  |-  ( ( A  e.  _V  /\  ( B  u.  C
)  e.  _V )  ->  ( A  e.  ( fi `  ( B  u.  C ) )  <->  E. z  e.  ( ~P ( B  u.  C
)  i^i  Fin ) A  =  |^| z ) )
2622, 24, 25syl2anc 661 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  ->  ( A  e.  ( fi `  ( B  u.  C ) )  <->  E. z  e.  ( ~P ( B  u.  C
)  i^i  Fin ) A  =  |^| z ) )
27 simpl1 1000 . . . . . . 7  |-  ( ( ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  z  e.  ( ~P ( B  u.  C
)  i^i  Fin )
)  ->  A  e.  _V )
28 eleq1 2515 . . . . . . . 8  |-  ( A  =  |^| z  -> 
( A  e.  _V  <->  |^| z  e.  _V )
)
29 intex 4593 . . . . . . . 8  |-  ( z  =/=  (/)  <->  |^| z  e.  _V )
3028, 29syl6bbr 263 . . . . . . 7  |-  ( A  =  |^| z  -> 
( A  e.  _V  <->  z  =/=  (/) ) )
3127, 30syl5ibcom 220 . . . . . 6  |-  ( ( ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  z  e.  ( ~P ( B  u.  C
)  i^i  Fin )
)  ->  ( A  =  |^| z  ->  z  =/=  (/) ) )
32 simp22 1031 . . . . . . . . . . . . . 14  |-  ( ( ( ( z  i^i 
B )  =/=  (/)  /\  (
z  i^i  C )  =/=  (/) )  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  B  e.  D
)
33 inss2 3704 . . . . . . . . . . . . . . 15  |-  ( z  i^i  B )  C_  B
3433a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ( z  i^i 
B )  =/=  (/)  /\  (
z  i^i  C )  =/=  (/) )  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  ( z  i^i 
B )  C_  B
)
35 simp1l 1021 . . . . . . . . . . . . . 14  |-  ( ( ( ( z  i^i 
B )  =/=  (/)  /\  (
z  i^i  C )  =/=  (/) )  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  ( z  i^i 
B )  =/=  (/) )
36 simp3l 1025 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( z  i^i 
B )  =/=  (/)  /\  (
z  i^i  C )  =/=  (/) )  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  z  e.  ( ~P ( B  u.  C )  i^i  Fin ) )
37 inss2 3704 . . . . . . . . . . . . . . . . 17  |-  ( ~P ( B  u.  C
)  i^i  Fin )  C_ 
Fin
3837sseli 3485 . . . . . . . . . . . . . . . 16  |-  ( z  e.  ( ~P ( B  u.  C )  i^i  Fin )  ->  z  e.  Fin )
3936, 38syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( z  i^i 
B )  =/=  (/)  /\  (
z  i^i  C )  =/=  (/) )  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  z  e.  Fin )
40 inss1 3703 . . . . . . . . . . . . . . 15  |-  ( z  i^i  B )  C_  z
41 ssfi 7742 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  Fin  /\  ( z  i^i  B
)  C_  z )  ->  ( z  i^i  B
)  e.  Fin )
4239, 40, 41sylancl 662 . . . . . . . . . . . . . 14  |-  ( ( ( ( z  i^i 
B )  =/=  (/)  /\  (
z  i^i  C )  =/=  (/) )  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  ( z  i^i 
B )  e.  Fin )
43 elfir 7877 . . . . . . . . . . . . . 14  |-  ( ( B  e.  D  /\  ( ( z  i^i 
B )  C_  B  /\  ( z  i^i  B
)  =/=  (/)  /\  (
z  i^i  B )  e.  Fin ) )  ->  |^| ( z  i^i  B
)  e.  ( fi
`  B ) )
4432, 34, 35, 42, 43syl13anc 1231 . . . . . . . . . . . . 13  |-  ( ( ( ( z  i^i 
B )  =/=  (/)  /\  (
z  i^i  C )  =/=  (/) )  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  |^| ( z  i^i 
B )  e.  ( fi `  B ) )
45 simp23 1032 . . . . . . . . . . . . . 14  |-  ( ( ( ( z  i^i 
B )  =/=  (/)  /\  (
z  i^i  C )  =/=  (/) )  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  C  e.  K
)
46 inss2 3704 . . . . . . . . . . . . . . 15  |-  ( z  i^i  C )  C_  C
4746a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ( z  i^i 
B )  =/=  (/)  /\  (
z  i^i  C )  =/=  (/) )  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  ( z  i^i 
C )  C_  C
)
48 simp1r 1022 . . . . . . . . . . . . . 14  |-  ( ( ( ( z  i^i 
B )  =/=  (/)  /\  (
z  i^i  C )  =/=  (/) )  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  ( z  i^i 
C )  =/=  (/) )
49 inss1 3703 . . . . . . . . . . . . . . 15  |-  ( z  i^i  C )  C_  z
50 ssfi 7742 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  Fin  /\  ( z  i^i  C
)  C_  z )  ->  ( z  i^i  C
)  e.  Fin )
5139, 49, 50sylancl 662 . . . . . . . . . . . . . 14  |-  ( ( ( ( z  i^i 
B )  =/=  (/)  /\  (
z  i^i  C )  =/=  (/) )  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  ( z  i^i 
C )  e.  Fin )
52 elfir 7877 . . . . . . . . . . . . . 14  |-  ( ( C  e.  K  /\  ( ( z  i^i 
C )  C_  C  /\  ( z  i^i  C
)  =/=  (/)  /\  (
z  i^i  C )  e.  Fin ) )  ->  |^| ( z  i^i  C
)  e.  ( fi
`  C ) )
5345, 47, 48, 51, 52syl13anc 1231 . . . . . . . . . . . . 13  |-  ( ( ( ( z  i^i 
B )  =/=  (/)  /\  (
z  i^i  C )  =/=  (/) )  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  |^| ( z  i^i 
C )  e.  ( fi `  C ) )
54 inss1 3703 . . . . . . . . . . . . . . . 16  |-  ( ~P ( B  u.  C
)  i^i  Fin )  C_ 
~P ( B  u.  C )
5554sseli 3485 . . . . . . . . . . . . . . 15  |-  ( z  e.  ( ~P ( B  u.  C )  i^i  Fin )  ->  z  e.  ~P ( B  u.  C ) )
5655elpwid 4007 . . . . . . . . . . . . . 14  |-  ( z  e.  ( ~P ( B  u.  C )  i^i  Fin )  ->  z  C_  ( B  u.  C
) )
57 indi 3729 . . . . . . . . . . . . . . . . 17  |-  ( z  i^i  ( B  u.  C ) )  =  ( ( z  i^i 
B )  u.  (
z  i^i  C )
)
58 df-ss 3475 . . . . . . . . . . . . . . . . . 18  |-  ( z 
C_  ( B  u.  C )  <->  ( z  i^i  ( B  u.  C
) )  =  z )
5958biimpi 194 . . . . . . . . . . . . . . . . 17  |-  ( z 
C_  ( B  u.  C )  ->  (
z  i^i  ( B  u.  C ) )  =  z )
6057, 59syl5reqr 2499 . . . . . . . . . . . . . . . 16  |-  ( z 
C_  ( B  u.  C )  ->  z  =  ( ( z  i^i  B )  u.  ( z  i^i  C
) ) )
6160inteqd 4276 . . . . . . . . . . . . . . 15  |-  ( z 
C_  ( B  u.  C )  ->  |^| z  =  |^| ( ( z  i^i  B )  u.  ( z  i^i  C
) ) )
62 intun 4304 . . . . . . . . . . . . . . 15  |-  |^| (
( z  i^i  B
)  u.  ( z  i^i  C ) )  =  ( |^| (
z  i^i  B )  i^i  |^| ( z  i^i 
C ) )
6361, 62syl6eq 2500 . . . . . . . . . . . . . 14  |-  ( z 
C_  ( B  u.  C )  ->  |^| z  =  ( |^| (
z  i^i  B )  i^i  |^| ( z  i^i 
C ) ) )
6436, 56, 633syl 20 . . . . . . . . . . . . 13  |-  ( ( ( ( z  i^i 
B )  =/=  (/)  /\  (
z  i^i  C )  =/=  (/) )  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  |^| z  =  (
|^| ( z  i^i 
B )  i^i  |^| ( z  i^i  C
) ) )
65 ineq1 3678 . . . . . . . . . . . . . . 15  |-  ( x  =  |^| ( z  i^i  B )  -> 
( x  i^i  y
)  =  ( |^| ( z  i^i  B
)  i^i  y )
)
6665eqeq2d 2457 . . . . . . . . . . . . . 14  |-  ( x  =  |^| ( z  i^i  B )  -> 
( |^| z  =  ( x  i^i  y )  <->  |^| z  =  ( |^| ( z  i^i  B
)  i^i  y )
) )
67 ineq2 3679 . . . . . . . . . . . . . . 15  |-  ( y  =  |^| ( z  i^i  C )  -> 
( |^| ( z  i^i 
B )  i^i  y
)  =  ( |^| ( z  i^i  B
)  i^i  |^| ( z  i^i  C ) ) )
6867eqeq2d 2457 . . . . . . . . . . . . . 14  |-  ( y  =  |^| ( z  i^i  C )  -> 
( |^| z  =  (
|^| ( z  i^i 
B )  i^i  y
)  <->  |^| z  =  (
|^| ( z  i^i 
B )  i^i  |^| ( z  i^i  C
) ) ) )
6966, 68rspc2ev 3207 . . . . . . . . . . . . 13  |-  ( (
|^| ( z  i^i 
B )  e.  ( fi `  B )  /\  |^| ( z  i^i 
C )  e.  ( fi `  C )  /\  |^| z  =  (
|^| ( z  i^i 
B )  i^i  |^| ( z  i^i  C
) ) )  ->  E. x  e.  ( fi `  B ) E. y  e.  ( fi
`  C ) |^| z  =  ( x  i^i  y ) )
7044, 53, 64, 69syl3anc 1229 . . . . . . . . . . . 12  |-  ( ( ( ( z  i^i 
B )  =/=  (/)  /\  (
z  i^i  C )  =/=  (/) )  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  E. x  e.  ( fi `  B ) E. y  e.  ( fi `  C )
|^| z  =  ( x  i^i  y ) )
71703mix3d 1174 . . . . . . . . . . 11  |-  ( ( ( ( z  i^i 
B )  =/=  (/)  /\  (
z  i^i  C )  =/=  (/) )  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  ( |^| z  e.  ( fi `  B
)  \/  |^| z  e.  ( fi `  C
)  \/  E. x  e.  ( fi `  B
) E. y  e.  ( fi `  C
) |^| z  =  ( x  i^i  y ) ) )
72713expib 1200 . . . . . . . . . 10  |-  ( ( ( z  i^i  B
)  =/=  (/)  /\  (
z  i^i  C )  =/=  (/) )  ->  (
( ( A  e. 
_V  /\  B  e.  D  /\  C  e.  K
)  /\  ( z  e.  ( ~P ( B  u.  C )  i^i 
Fin )  /\  z  =/=  (/) ) )  -> 
( |^| z  e.  ( fi `  B )  \/  |^| z  e.  ( fi `  C )  \/  E. x  e.  ( fi `  B
) E. y  e.  ( fi `  C
) |^| z  =  ( x  i^i  y ) ) ) )
73 simp23 1032 . . . . . . . . . . . . 13  |-  ( ( ( z  i^i  B
)  =  (/)  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  C  e.  K
)
74 simp1 997 . . . . . . . . . . . . . . 15  |-  ( ( ( z  i^i  B
)  =  (/)  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  ( z  i^i 
B )  =  (/) )
75 simp3l 1025 . . . . . . . . . . . . . . . 16  |-  ( ( ( z  i^i  B
)  =  (/)  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  z  e.  ( ~P ( B  u.  C )  i^i  Fin ) )
76 reldisj 3856 . . . . . . . . . . . . . . . 16  |-  ( z 
C_  ( B  u.  C )  ->  (
( z  i^i  B
)  =  (/)  <->  z  C_  ( ( B  u.  C )  \  B
) ) )
7775, 56, 763syl 20 . . . . . . . . . . . . . . 15  |-  ( ( ( z  i^i  B
)  =  (/)  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  ( ( z  i^i  B )  =  (/) 
<->  z  C_  ( ( B  u.  C )  \  B ) ) )
7874, 77mpbid 210 . . . . . . . . . . . . . 14  |-  ( ( ( z  i^i  B
)  =  (/)  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  z  C_  (
( B  u.  C
)  \  B )
)
79 uncom 3633 . . . . . . . . . . . . . . . . 17  |-  ( B  u.  C )  =  ( C  u.  B
)
8079difeq1i 3603 . . . . . . . . . . . . . . . 16  |-  ( ( B  u.  C ) 
\  B )  =  ( ( C  u.  B )  \  B
)
81 difun2 3893 . . . . . . . . . . . . . . . 16  |-  ( ( C  u.  B ) 
\  B )  =  ( C  \  B
)
8280, 81eqtri 2472 . . . . . . . . . . . . . . 15  |-  ( ( B  u.  C ) 
\  B )  =  ( C  \  B
)
83 difss 3616 . . . . . . . . . . . . . . 15  |-  ( C 
\  B )  C_  C
8482, 83eqsstri 3519 . . . . . . . . . . . . . 14  |-  ( ( B  u.  C ) 
\  B )  C_  C
8578, 84syl6ss 3501 . . . . . . . . . . . . 13  |-  ( ( ( z  i^i  B
)  =  (/)  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  z  C_  C
)
86 simp3r 1026 . . . . . . . . . . . . 13  |-  ( ( ( z  i^i  B
)  =  (/)  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  z  =/=  (/) )
8775, 38syl 16 . . . . . . . . . . . . 13  |-  ( ( ( z  i^i  B
)  =  (/)  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  z  e.  Fin )
88 elfir 7877 . . . . . . . . . . . . 13  |-  ( ( C  e.  K  /\  ( z  C_  C  /\  z  =/=  (/)  /\  z  e.  Fin ) )  ->  |^| z  e.  ( fi `  C ) )
8973, 85, 86, 87, 88syl13anc 1231 . . . . . . . . . . . 12  |-  ( ( ( z  i^i  B
)  =  (/)  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  |^| z  e.  ( fi `  C ) )
90893mix2d 1173 . . . . . . . . . . 11  |-  ( ( ( z  i^i  B
)  =  (/)  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  ( |^| z  e.  ( fi `  B
)  \/  |^| z  e.  ( fi `  C
)  \/  E. x  e.  ( fi `  B
) E. y  e.  ( fi `  C
) |^| z  =  ( x  i^i  y ) ) )
91903expib 1200 . . . . . . . . . 10  |-  ( ( z  i^i  B )  =  (/)  ->  ( ( ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  ( z  e.  ( ~P ( B  u.  C )  i^i  Fin )  /\  z  =/=  (/) ) )  ->  ( |^| z  e.  ( fi `  B
)  \/  |^| z  e.  ( fi `  C
)  \/  E. x  e.  ( fi `  B
) E. y  e.  ( fi `  C
) |^| z  =  ( x  i^i  y ) ) ) )
92 simp22 1031 . . . . . . . . . . . . 13  |-  ( ( ( z  i^i  C
)  =  (/)  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  B  e.  D
)
93 simp1 997 . . . . . . . . . . . . . . 15  |-  ( ( ( z  i^i  C
)  =  (/)  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  ( z  i^i 
C )  =  (/) )
94 simp3l 1025 . . . . . . . . . . . . . . . 16  |-  ( ( ( z  i^i  C
)  =  (/)  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  z  e.  ( ~P ( B  u.  C )  i^i  Fin ) )
95 reldisj 3856 . . . . . . . . . . . . . . . 16  |-  ( z 
C_  ( B  u.  C )  ->  (
( z  i^i  C
)  =  (/)  <->  z  C_  ( ( B  u.  C )  \  C
) ) )
9694, 56, 953syl 20 . . . . . . . . . . . . . . 15  |-  ( ( ( z  i^i  C
)  =  (/)  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  ( ( z  i^i  C )  =  (/) 
<->  z  C_  ( ( B  u.  C )  \  C ) ) )
9793, 96mpbid 210 . . . . . . . . . . . . . 14  |-  ( ( ( z  i^i  C
)  =  (/)  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  z  C_  (
( B  u.  C
)  \  C )
)
98 difun2 3893 . . . . . . . . . . . . . . 15  |-  ( ( B  u.  C ) 
\  C )  =  ( B  \  C
)
99 difss 3616 . . . . . . . . . . . . . . 15  |-  ( B 
\  C )  C_  B
10098, 99eqsstri 3519 . . . . . . . . . . . . . 14  |-  ( ( B  u.  C ) 
\  C )  C_  B
10197, 100syl6ss 3501 . . . . . . . . . . . . 13  |-  ( ( ( z  i^i  C
)  =  (/)  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  z  C_  B
)
102 simp3r 1026 . . . . . . . . . . . . 13  |-  ( ( ( z  i^i  C
)  =  (/)  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  z  =/=  (/) )
10394, 38syl 16 . . . . . . . . . . . . 13  |-  ( ( ( z  i^i  C
)  =  (/)  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  z  e.  Fin )
104 elfir 7877 . . . . . . . . . . . . 13  |-  ( ( B  e.  D  /\  ( z  C_  B  /\  z  =/=  (/)  /\  z  e.  Fin ) )  ->  |^| z  e.  ( fi `  B ) )
10592, 101, 102, 103, 104syl13anc 1231 . . . . . . . . . . . 12  |-  ( ( ( z  i^i  C
)  =  (/)  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  |^| z  e.  ( fi `  B ) )
1061053mix1d 1172 . . . . . . . . . . 11  |-  ( ( ( z  i^i  C
)  =  (/)  /\  ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  (
z  e.  ( ~P ( B  u.  C
)  i^i  Fin )  /\  z  =/=  (/) ) )  ->  ( |^| z  e.  ( fi `  B
)  \/  |^| z  e.  ( fi `  C
)  \/  E. x  e.  ( fi `  B
) E. y  e.  ( fi `  C
) |^| z  =  ( x  i^i  y ) ) )
1071063expib 1200 . . . . . . . . . 10  |-  ( ( z  i^i  C )  =  (/)  ->  ( ( ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  ( z  e.  ( ~P ( B  u.  C )  i^i  Fin )  /\  z  =/=  (/) ) )  ->  ( |^| z  e.  ( fi `  B
)  \/  |^| z  e.  ( fi `  C
)  \/  E. x  e.  ( fi `  B
) E. y  e.  ( fi `  C
) |^| z  =  ( x  i^i  y ) ) ) )
10872, 91, 107pm2.61iine 2765 . . . . . . . . 9  |-  ( ( ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  ( z  e.  ( ~P ( B  u.  C )  i^i  Fin )  /\  z  =/=  (/) ) )  ->  ( |^| z  e.  ( fi `  B
)  \/  |^| z  e.  ( fi `  C
)  \/  E. x  e.  ( fi `  B
) E. y  e.  ( fi `  C
) |^| z  =  ( x  i^i  y ) ) )
109 eleq1 2515 . . . . . . . . . 10  |-  ( A  =  |^| z  -> 
( A  e.  ( fi `  B )  <->  |^| z  e.  ( fi `  B ) ) )
110 eleq1 2515 . . . . . . . . . 10  |-  ( A  =  |^| z  -> 
( A  e.  ( fi `  C )  <->  |^| z  e.  ( fi `  C ) ) )
111 eqeq1 2447 . . . . . . . . . . 11  |-  ( A  =  |^| z  -> 
( A  =  ( x  i^i  y )  <->  |^| z  =  (
x  i^i  y )
) )
1121112rexbidv 2961 . . . . . . . . . 10  |-  ( A  =  |^| z  -> 
( E. x  e.  ( fi `  B
) E. y  e.  ( fi `  C
) A  =  ( x  i^i  y )  <->  E. x  e.  ( fi `  B ) E. y  e.  ( fi
`  C ) |^| z  =  ( x  i^i  y ) ) )
113109, 110, 1123orbi123d 1299 . . . . . . . . 9  |-  ( A  =  |^| z  -> 
( ( A  e.  ( fi `  B
)  \/  A  e.  ( fi `  C
)  \/  E. x  e.  ( fi `  B
) E. y  e.  ( fi `  C
) A  =  ( x  i^i  y ) )  <->  ( |^| z  e.  ( fi `  B
)  \/  |^| z  e.  ( fi `  C
)  \/  E. x  e.  ( fi `  B
) E. y  e.  ( fi `  C
) |^| z  =  ( x  i^i  y ) ) ) )
114108, 113syl5ibrcom 222 . . . . . . . 8  |-  ( ( ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  ( z  e.  ( ~P ( B  u.  C )  i^i  Fin )  /\  z  =/=  (/) ) )  ->  ( A  = 
|^| z  ->  ( A  e.  ( fi `  B )  \/  A  e.  ( fi `  C
)  \/  E. x  e.  ( fi `  B
) E. y  e.  ( fi `  C
) A  =  ( x  i^i  y ) ) ) )
115114expr 615 . . . . . . 7  |-  ( ( ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  z  e.  ( ~P ( B  u.  C
)  i^i  Fin )
)  ->  ( z  =/=  (/)  ->  ( A  =  |^| z  ->  ( A  e.  ( fi `  B )  \/  A  e.  ( fi `  C
)  \/  E. x  e.  ( fi `  B
) E. y  e.  ( fi `  C
) A  =  ( x  i^i  y ) ) ) ) )
116115com23 78 . . . . . 6  |-  ( ( ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  z  e.  ( ~P ( B  u.  C
)  i^i  Fin )
)  ->  ( A  =  |^| z  ->  (
z  =/=  (/)  ->  ( A  e.  ( fi `  B )  \/  A  e.  ( fi `  C
)  \/  E. x  e.  ( fi `  B
) E. y  e.  ( fi `  C
) A  =  ( x  i^i  y ) ) ) ) )
11731, 116mpdd 40 . . . . 5  |-  ( ( ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  /\  z  e.  ( ~P ( B  u.  C
)  i^i  Fin )
)  ->  ( A  =  |^| z  ->  ( A  e.  ( fi `  B )  \/  A  e.  ( fi `  C
)  \/  E. x  e.  ( fi `  B
) E. y  e.  ( fi `  C
) A  =  ( x  i^i  y ) ) ) )
118117rexlimdva 2935 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  ->  ( E. z  e.  ( ~P ( B  u.  C )  i^i 
Fin ) A  = 
|^| z  ->  ( A  e.  ( fi `  B )  \/  A  e.  ( fi `  C
)  \/  E. x  e.  ( fi `  B
) E. y  e.  ( fi `  C
) A  =  ( x  i^i  y ) ) ) )
11926, 118sylbid 215 . . 3  |-  ( ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  ->  ( A  e.  ( fi `  ( B  u.  C ) )  ->  ( A  e.  ( fi `  B
)  \/  A  e.  ( fi `  C
)  \/  E. x  e.  ( fi `  B
) E. y  e.  ( fi `  C
) A  =  ( x  i^i  y ) ) ) )
120 ssun1 3652 . . . . . . 7  |-  B  C_  ( B  u.  C
)
121 fiss 7886 . . . . . . 7  |-  ( ( ( B  u.  C
)  e.  _V  /\  B  C_  ( B  u.  C ) )  -> 
( fi `  B
)  C_  ( fi `  ( B  u.  C
) ) )
12223, 120, 121sylancl 662 . . . . . 6  |-  ( ( B  e.  D  /\  C  e.  K )  ->  ( fi `  B
)  C_  ( fi `  ( B  u.  C
) ) )
1231223adant1 1015 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  ->  ( fi `  B
)  C_  ( fi `  ( B  u.  C
) ) )
124123sseld 3488 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  ->  ( A  e.  ( fi `  B )  ->  A  e.  ( fi `  ( B  u.  C ) ) ) )
125 ssun2 3653 . . . . . . 7  |-  C  C_  ( B  u.  C
)
126 fiss 7886 . . . . . . 7  |-  ( ( ( B  u.  C
)  e.  _V  /\  C  C_  ( B  u.  C ) )  -> 
( fi `  C
)  C_  ( fi `  ( B  u.  C
) ) )
12723, 125, 126sylancl 662 . . . . . 6  |-  ( ( B  e.  D  /\  C  e.  K )  ->  ( fi `  C
)  C_  ( fi `  ( B  u.  C
) ) )
1281273adant1 1015 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  ->  ( fi `  C
)  C_  ( fi `  ( B  u.  C
) ) )
129128sseld 3488 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  ->  ( A  e.  ( fi `  C )  ->  A  e.  ( fi `  ( B  u.  C ) ) ) )
130123sseld 3488 . . . . . . 7  |-  ( ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  ->  ( x  e.  ( fi `  B )  ->  x  e.  ( fi `  ( B  u.  C ) ) ) )
131128sseld 3488 . . . . . . 7  |-  ( ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  ->  ( y  e.  ( fi `  C )  ->  y  e.  ( fi `  ( B  u.  C ) ) ) )
132130, 131anim12d 563 . . . . . 6  |-  ( ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  ->  ( ( x  e.  ( fi `  B
)  /\  y  e.  ( fi `  C ) )  ->  ( x  e.  ( fi `  ( B  u.  C )
)  /\  y  e.  ( fi `  ( B  u.  C ) ) ) ) )
133 fiin 7884 . . . . . . 7  |-  ( ( x  e.  ( fi
`  ( B  u.  C ) )  /\  y  e.  ( fi `  ( B  u.  C
) ) )  -> 
( x  i^i  y
)  e.  ( fi
`  ( B  u.  C ) ) )
134 eleq1a 2526 . . . . . . 7  |-  ( ( x  i^i  y )  e.  ( fi `  ( B  u.  C
) )  ->  ( A  =  ( x  i^i  y )  ->  A  e.  ( fi `  ( B  u.  C )
) ) )
135133, 134syl 16 . . . . . 6  |-  ( ( x  e.  ( fi
`  ( B  u.  C ) )  /\  y  e.  ( fi `  ( B  u.  C
) ) )  -> 
( A  =  ( x  i^i  y )  ->  A  e.  ( fi `  ( B  u.  C ) ) ) )
136132, 135syl6 33 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  ->  ( ( x  e.  ( fi `  B
)  /\  y  e.  ( fi `  C ) )  ->  ( A  =  ( x  i^i  y )  ->  A  e.  ( fi `  ( B  u.  C )
) ) ) )
137136rexlimdvv 2941 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  ->  ( E. x  e.  ( fi `  B
) E. y  e.  ( fi `  C
) A  =  ( x  i^i  y )  ->  A  e.  ( fi `  ( B  u.  C ) ) ) )
138124, 129, 1373jaod 1293 . . 3  |-  ( ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  ->  ( ( A  e.  ( fi `  B
)  \/  A  e.  ( fi `  C
)  \/  E. x  e.  ( fi `  B
) E. y  e.  ( fi `  C
) A  =  ( x  i^i  y ) )  ->  A  e.  ( fi `  ( B  u.  C ) ) ) )
139119, 138impbid 191 . 2  |-  ( ( A  e.  _V  /\  B  e.  D  /\  C  e.  K )  ->  ( A  e.  ( fi `  ( B  u.  C ) )  <-> 
( A  e.  ( fi `  B )  \/  A  e.  ( fi `  C )  \/  E. x  e.  ( fi `  B
) E. y  e.  ( fi `  C
) A  =  ( x  i^i  y ) ) ) )
1405, 21, 139pm5.21nd 900 1  |-  ( ( B  e.  D  /\  C  e.  K )  ->  ( A  e.  ( fi `  ( B  u.  C ) )  <-> 
( A  e.  ( fi `  B )  \/  A  e.  ( fi `  C )  \/  E. x  e.  ( fi `  B
) E. y  e.  ( fi `  C
) A  =  ( x  i^i  y ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    \/ w3o 973    /\ w3a 974    = wceq 1383    e. wcel 1804    =/= wne 2638   E.wrex 2794   _Vcvv 3095    \ cdif 3458    u. cun 3459    i^i cin 3460    C_ wss 3461   (/)c0 3770   ~Pcpw 3997   |^|cint 4271   ` cfv 5578   Fincfn 7518   ficfi 7872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-reu 2800  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-recs 7044  df-rdg 7078  df-1o 7132  df-oadd 7136  df-er 7313  df-en 7519  df-fin 7522  df-fi 7873
This theorem is referenced by:  ordtbas2  19670  ordtbas  19671  fbunfip  20348  fmfnfmlem4  20436
  Copyright terms: Public domain W3C validator