MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffi3 Structured version   Visualization version   GIF version

Theorem dffi3 8220
Description: The set of finite intersections can be "constructed" inductively by iterating binary intersection ω-many times. (Contributed by Mario Carneiro, 21-Mar-2015.)
Hypothesis
Ref Expression
dffi3.1 𝑅 = (𝑢 ∈ V ↦ ran (𝑦𝑢, 𝑧𝑢 ↦ (𝑦𝑧)))
Assertion
Ref Expression
dffi3 (𝐴𝑉 → (fi‘𝐴) = (rec(𝑅, 𝐴) “ ω))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑅   𝑦,𝑉   𝑦,𝑢,𝑧
Allowed substitution hints:   𝐴(𝑧,𝑢)   𝑅(𝑧,𝑢)   𝑉(𝑧,𝑢)

Proof of Theorem dffi3
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑚 𝑛 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dffi2 8212 . . . 4 (𝐴𝑉 → (fi‘𝐴) = {𝑥 ∣ (𝐴𝑥 ∧ ∀𝑐𝑥𝑑𝑥 (𝑐𝑑) ∈ 𝑥)})
2 fr0g 7418 . . . . . . . 8 (𝐴𝑉 → ((rec(𝑅, 𝐴) ↾ ω)‘∅) = 𝐴)
3 frfnom 7417 . . . . . . . . 9 (rec(𝑅, 𝐴) ↾ ω) Fn ω
4 peano1 6977 . . . . . . . . 9 ∅ ∈ ω
5 fnfvelrn 6264 . . . . . . . . 9 (((rec(𝑅, 𝐴) ↾ ω) Fn ω ∧ ∅ ∈ ω) → ((rec(𝑅, 𝐴) ↾ ω)‘∅) ∈ ran (rec(𝑅, 𝐴) ↾ ω))
63, 4, 5mp2an 704 . . . . . . . 8 ((rec(𝑅, 𝐴) ↾ ω)‘∅) ∈ ran (rec(𝑅, 𝐴) ↾ ω)
72, 6syl6eqelr 2697 . . . . . . 7 (𝐴𝑉𝐴 ∈ ran (rec(𝑅, 𝐴) ↾ ω))
8 elssuni 4403 . . . . . . 7 (𝐴 ∈ ran (rec(𝑅, 𝐴) ↾ ω) → 𝐴 ran (rec(𝑅, 𝐴) ↾ ω))
97, 8syl 17 . . . . . 6 (𝐴𝑉𝐴 ran (rec(𝑅, 𝐴) ↾ ω))
10 reeanv 3086 . . . . . . . . 9 (∃𝑚 ∈ ω ∃𝑛 ∈ ω (𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)) ↔ (∃𝑚 ∈ ω 𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) ∧ ∃𝑛 ∈ ω 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)))
11 eliun 4460 . . . . . . . . . 10 (𝑐 𝑚 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) ↔ ∃𝑚 ∈ ω 𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑚))
12 eliun 4460 . . . . . . . . . 10 (𝑑 𝑛 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↔ ∃𝑛 ∈ ω 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))
1311, 12anbi12i 729 . . . . . . . . 9 ((𝑐 𝑚 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) ∧ 𝑑 𝑛 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)) ↔ (∃𝑚 ∈ ω 𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) ∧ ∃𝑛 ∈ ω 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)))
14 fniunfv 6409 . . . . . . . . . . . 12 ((rec(𝑅, 𝐴) ↾ ω) Fn ω → 𝑚 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) = ran (rec(𝑅, 𝐴) ↾ ω))
1514eleq2d 2673 . . . . . . . . . . 11 ((rec(𝑅, 𝐴) ↾ ω) Fn ω → (𝑐 𝑚 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) ↔ 𝑐 ran (rec(𝑅, 𝐴) ↾ ω)))
16 fniunfv 6409 . . . . . . . . . . . 12 ((rec(𝑅, 𝐴) ↾ ω) Fn ω → 𝑛 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) = ran (rec(𝑅, 𝐴) ↾ ω))
1716eleq2d 2673 . . . . . . . . . . 11 ((rec(𝑅, 𝐴) ↾ ω) Fn ω → (𝑑 𝑛 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↔ 𝑑 ran (rec(𝑅, 𝐴) ↾ ω)))
1815, 17anbi12d 743 . . . . . . . . . 10 ((rec(𝑅, 𝐴) ↾ ω) Fn ω → ((𝑐 𝑚 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) ∧ 𝑑 𝑛 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)) ↔ (𝑐 ran (rec(𝑅, 𝐴) ↾ ω) ∧ 𝑑 ran (rec(𝑅, 𝐴) ↾ ω))))
193, 18ax-mp 5 . . . . . . . . 9 ((𝑐 𝑚 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) ∧ 𝑑 𝑛 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)) ↔ (𝑐 ran (rec(𝑅, 𝐴) ↾ ω) ∧ 𝑑 ran (rec(𝑅, 𝐴) ↾ ω)))
2010, 13, 193bitr2i 287 . . . . . . . 8 (∃𝑚 ∈ ω ∃𝑛 ∈ ω (𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)) ↔ (𝑐 ran (rec(𝑅, 𝐴) ↾ ω) ∧ 𝑑 ran (rec(𝑅, 𝐴) ↾ ω)))
21 ordom 6966 . . . . . . . . . . . . . . . 16 Ord ω
22 ordunel 6919 . . . . . . . . . . . . . . . 16 ((Ord ω ∧ 𝑚 ∈ ω ∧ 𝑛 ∈ ω) → (𝑚𝑛) ∈ ω)
2321, 22mp3an1 1403 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ω ∧ 𝑛 ∈ ω) → (𝑚𝑛) ∈ ω)
2423adantl 481 . . . . . . . . . . . . . 14 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) → (𝑚𝑛) ∈ ω)
25 simprl 790 . . . . . . . . . . . . . 14 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) → 𝑚 ∈ ω)
2624, 25jca 553 . . . . . . . . . . . . 13 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) → ((𝑚𝑛) ∈ ω ∧ 𝑚 ∈ ω))
27 nnon 6963 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ω → 𝑦 ∈ On)
2827adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑉𝑥 ∈ ω) ∧ 𝑦 ∈ ω) → 𝑦 ∈ On)
29 nnon 6963 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ω → 𝑥 ∈ On)
3029ad2antlr 759 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑉𝑥 ∈ ω) ∧ 𝑦 ∈ ω) → 𝑥 ∈ On)
31 onsseleq 5682 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ On ∧ 𝑥 ∈ On) → (𝑦𝑥 ↔ (𝑦𝑥𝑦 = 𝑥)))
3228, 30, 31syl2anc 691 . . . . . . . . . . . . . . . . 17 (((𝐴𝑉𝑥 ∈ ω) ∧ 𝑦 ∈ ω) → (𝑦𝑥 ↔ (𝑦𝑥𝑦 = 𝑥)))
33 rzal 4025 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = ∅ → ∀𝑦𝑥 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥))
3433biantrud 527 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = ∅ → (((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ⊆ (fi‘𝐴) ↔ (((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ⊆ (fi‘𝐴) ∧ ∀𝑦𝑥 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥))))
35 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = ∅ → ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) = ((rec(𝑅, 𝐴) ↾ ω)‘∅))
3635sseq1d 3595 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = ∅ → (((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ⊆ (fi‘𝐴) ↔ ((rec(𝑅, 𝐴) ↾ ω)‘∅) ⊆ (fi‘𝐴)))
3734, 36bitr3d 269 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = ∅ → ((((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ⊆ (fi‘𝐴) ∧ ∀𝑦𝑥 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥)) ↔ ((rec(𝑅, 𝐴) ↾ ω)‘∅) ⊆ (fi‘𝐴)))
38 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = 𝑛 → ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) = ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))
3938sseq1d 3595 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 𝑛 → (((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ⊆ (fi‘𝐴) ↔ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴)))
4038sseq2d 3596 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = 𝑛 → (((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ↔ ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)))
4140raleqbi1dv 3123 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 𝑛 → (∀𝑦𝑥 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ↔ ∀𝑦𝑛 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)))
4239, 41anbi12d 743 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑛 → ((((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ⊆ (fi‘𝐴) ∧ ∀𝑦𝑥 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥)) ↔ (((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴) ∧ ∀𝑦𝑛 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))))
43 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = suc 𝑛 → ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) = ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛))
4443sseq1d 3595 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = suc 𝑛 → (((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ⊆ (fi‘𝐴) ↔ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛) ⊆ (fi‘𝐴)))
4543sseq2d 3596 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = suc 𝑛 → (((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ↔ ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛)))
4645raleqbi1dv 3123 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = suc 𝑛 → (∀𝑦𝑥 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ↔ ∀𝑦 ∈ suc 𝑛((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛)))
4744, 46anbi12d 743 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = suc 𝑛 → ((((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ⊆ (fi‘𝐴) ∧ ∀𝑦𝑥 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥)) ↔ (((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛) ⊆ (fi‘𝐴) ∧ ∀𝑦 ∈ suc 𝑛((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛))))
48 ssfii 8208 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴𝑉𝐴 ⊆ (fi‘𝐴))
492, 48eqsstrd 3602 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴𝑉 → ((rec(𝑅, 𝐴) ↾ ω)‘∅) ⊆ (fi‘𝐴))
50 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) → 𝑥 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))
51 eqidd 2611 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) → 𝑥 = 𝑥)
52 ineq1 3769 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑎 = 𝑥 → (𝑎𝑏) = (𝑥𝑏))
5352eqeq2d 2620 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑎 = 𝑥 → (𝑥 = (𝑎𝑏) ↔ 𝑥 = (𝑥𝑏)))
54 ineq2 3770 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑏 = 𝑥 → (𝑥𝑏) = (𝑥𝑥))
55 inidm 3784 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑥𝑥) = 𝑥
5654, 55syl6eq 2660 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑏 = 𝑥 → (𝑥𝑏) = 𝑥)
5756eqeq2d 2620 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑏 = 𝑥 → (𝑥 = (𝑥𝑏) ↔ 𝑥 = 𝑥))
5853, 57rspc2ev 3295 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑥 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ∧ 𝑥 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ∧ 𝑥 = 𝑥) → ∃𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)∃𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)𝑥 = (𝑎𝑏))
5950, 50, 51, 58syl3anc 1318 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) → ∃𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)∃𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)𝑥 = (𝑎𝑏))
60 eqid 2610 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)) = (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏))
6160rnmpt2 6668 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)) = {𝑥 ∣ ∃𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)∃𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)𝑥 = (𝑎𝑏)}
6261abeq2i 2722 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 ∈ ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)) ↔ ∃𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)∃𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)𝑥 = (𝑎𝑏))
6359, 62sylibr 223 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑥 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) → 𝑥 ∈ ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)))
6463ssriv 3572 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏))
65 simpl 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑛 ∈ ω ∧ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴)) → 𝑛 ∈ ω)
66 fvex 6113 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ∈ V
6766uniex 6851 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ∈ V
6867pwex 4774 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ∈ V
69 inss1 3795 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑎𝑏) ⊆ 𝑎
70 elssuni 4403 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) → 𝑎 ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))
7170adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ∧ 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)) → 𝑎 ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))
7269, 71syl5ss 3579 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ∧ 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)) → (𝑎𝑏) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))
73 vex 3176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 𝑎 ∈ V
7473inex1 4727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑎𝑏) ∈ V
7574elpw 4114 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑎𝑏) ∈ 𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↔ (𝑎𝑏) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))
7672, 75sylibr 223 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ∧ 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)) → (𝑎𝑏) ∈ 𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))
7776rgen2a 2960 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)∀𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)(𝑎𝑏) ∈ 𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)
7860fmpt2 7126 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (∀𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)∀𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)(𝑎𝑏) ∈ 𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↔ (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)):(((rec(𝑅, 𝐴) ↾ ω)‘𝑛) × ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))⟶𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))
7977, 78mpbi 219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)):(((rec(𝑅, 𝐴) ↾ ω)‘𝑛) × ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))⟶𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)
80 frn 5966 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)):(((rec(𝑅, 𝐴) ↾ ω)‘𝑛) × ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))⟶𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) → ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)) ⊆ 𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))
8179, 80ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)) ⊆ 𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)
8268, 81ssexi 4731 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)) ∈ V
83 nfcv 2751 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 𝑣𝐴
84 nfcv 2751 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 𝑣𝑛
85 nfcv 2751 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 𝑣ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏))
86 dffi3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 𝑅 = (𝑢 ∈ V ↦ ran (𝑦𝑢, 𝑧𝑢 ↦ (𝑦𝑧)))
87 mpt2eq12 6613 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑢 = 𝑣𝑢 = 𝑣) → (𝑦𝑢, 𝑧𝑢 ↦ (𝑦𝑧)) = (𝑦𝑣, 𝑧𝑣 ↦ (𝑦𝑧)))
8887anidms 675 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑢 = 𝑣 → (𝑦𝑢, 𝑧𝑢 ↦ (𝑦𝑧)) = (𝑦𝑣, 𝑧𝑣 ↦ (𝑦𝑧)))
89 ineq1 3769 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑦 = 𝑎 → (𝑦𝑧) = (𝑎𝑧))
90 ineq2 3770 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑧 = 𝑏 → (𝑎𝑧) = (𝑎𝑏))
9189, 90cbvmpt2v 6633 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑦𝑣, 𝑧𝑣 ↦ (𝑦𝑧)) = (𝑎𝑣, 𝑏𝑣 ↦ (𝑎𝑏))
9288, 91syl6eq 2660 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑢 = 𝑣 → (𝑦𝑢, 𝑧𝑢 ↦ (𝑦𝑧)) = (𝑎𝑣, 𝑏𝑣 ↦ (𝑎𝑏)))
9392rneqd 5274 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑢 = 𝑣 → ran (𝑦𝑢, 𝑧𝑢 ↦ (𝑦𝑧)) = ran (𝑎𝑣, 𝑏𝑣 ↦ (𝑎𝑏)))
9493cbvmptv 4678 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑢 ∈ V ↦ ran (𝑦𝑢, 𝑧𝑢 ↦ (𝑦𝑧))) = (𝑣 ∈ V ↦ ran (𝑎𝑣, 𝑏𝑣 ↦ (𝑎𝑏)))
9586, 94eqtri 2632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 𝑅 = (𝑣 ∈ V ↦ ran (𝑎𝑣, 𝑏𝑣 ↦ (𝑎𝑏)))
96 rdgeq1 7394 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑅 = (𝑣 ∈ V ↦ ran (𝑎𝑣, 𝑏𝑣 ↦ (𝑎𝑏))) → rec(𝑅, 𝐴) = rec((𝑣 ∈ V ↦ ran (𝑎𝑣, 𝑏𝑣 ↦ (𝑎𝑏))), 𝐴))
9795, 96ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 rec(𝑅, 𝐴) = rec((𝑣 ∈ V ↦ ran (𝑎𝑣, 𝑏𝑣 ↦ (𝑎𝑏))), 𝐴)
9897reseq1i 5313 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (rec(𝑅, 𝐴) ↾ ω) = (rec((𝑣 ∈ V ↦ ran (𝑎𝑣, 𝑏𝑣 ↦ (𝑎𝑏))), 𝐴) ↾ ω)
99 mpt2eq12 6613 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑣 = ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ∧ 𝑣 = ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)) → (𝑎𝑣, 𝑏𝑣 ↦ (𝑎𝑏)) = (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)))
10099anidms 675 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑣 = ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) → (𝑎𝑣, 𝑏𝑣 ↦ (𝑎𝑏)) = (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)))
101100rneqd 5274 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑣 = ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) → ran (𝑎𝑣, 𝑏𝑣 ↦ (𝑎𝑏)) = ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)))
10283, 84, 85, 98, 101frsucmpt 7420 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑛 ∈ ω ∧ ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)) ∈ V) → ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛) = ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)))
10365, 82, 102sylancl 693 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑛 ∈ ω ∧ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴)) → ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛) = ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)))
10464, 103syl5sseqr 3617 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑛 ∈ ω ∧ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴)) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛))
105 sstr2 3575 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) → (((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛)))
106104, 105syl5com 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑛 ∈ ω ∧ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴)) → (((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛)))
107106ralimdv 2946 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑛 ∈ ω ∧ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴)) → (∀𝑦𝑛 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) → ∀𝑦𝑛 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛)))
108 vex 3176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 𝑛 ∈ V
109 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 = 𝑛 → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) = ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))
110109sseq1d 3595 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 = 𝑛 → (((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛) ↔ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛)))
111108, 110ralsn 4169 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (∀𝑦 ∈ {𝑛} ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛) ↔ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛))
112104, 111sylibr 223 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑛 ∈ ω ∧ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴)) → ∀𝑦 ∈ {𝑛} ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛))
113107, 112jctird 565 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑛 ∈ ω ∧ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴)) → (∀𝑦𝑛 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) → (∀𝑦𝑛 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛) ∧ ∀𝑦 ∈ {𝑛} ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛))))
114 df-suc 5646 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 suc 𝑛 = (𝑛 ∪ {𝑛})
115114raleqi 3119 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (∀𝑦 ∈ suc 𝑛((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛) ↔ ∀𝑦 ∈ (𝑛 ∪ {𝑛})((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛))
116 ralunb 3756 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (∀𝑦 ∈ (𝑛 ∪ {𝑛})((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛) ↔ (∀𝑦𝑛 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛) ∧ ∀𝑦 ∈ {𝑛} ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛)))
117115, 116bitri 263 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (∀𝑦 ∈ suc 𝑛((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛) ↔ (∀𝑦𝑛 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛) ∧ ∀𝑦 ∈ {𝑛} ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛)))
118113, 117syl6ibr 241 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑛 ∈ ω ∧ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴)) → (∀𝑦𝑛 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) → ∀𝑦 ∈ suc 𝑛((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛)))
119 fiin 8211 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑎 ∈ (fi‘𝐴) ∧ 𝑏 ∈ (fi‘𝐴)) → (𝑎𝑏) ∈ (fi‘𝐴))
120119rgen2a 2960 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 𝑎 ∈ (fi‘𝐴)∀𝑏 ∈ (fi‘𝐴)(𝑎𝑏) ∈ (fi‘𝐴)
121 ssralv 3629 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴) → (∀𝑏 ∈ (fi‘𝐴)(𝑎𝑏) ∈ (fi‘𝐴) → ∀𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)(𝑎𝑏) ∈ (fi‘𝐴)))
122121ralimdv 2946 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴) → (∀𝑎 ∈ (fi‘𝐴)∀𝑏 ∈ (fi‘𝐴)(𝑎𝑏) ∈ (fi‘𝐴) → ∀𝑎 ∈ (fi‘𝐴)∀𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)(𝑎𝑏) ∈ (fi‘𝐴)))
123 ssralv 3629 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴) → (∀𝑎 ∈ (fi‘𝐴)∀𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)(𝑎𝑏) ∈ (fi‘𝐴) → ∀𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)∀𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)(𝑎𝑏) ∈ (fi‘𝐴)))
124122, 123syld 46 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴) → (∀𝑎 ∈ (fi‘𝐴)∀𝑏 ∈ (fi‘𝐴)(𝑎𝑏) ∈ (fi‘𝐴) → ∀𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)∀𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)(𝑎𝑏) ∈ (fi‘𝐴)))
125120, 124mpi 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴) → ∀𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)∀𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)(𝑎𝑏) ∈ (fi‘𝐴))
12660fmpt2 7126 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∀𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)∀𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)(𝑎𝑏) ∈ (fi‘𝐴) ↔ (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)):(((rec(𝑅, 𝐴) ↾ ω)‘𝑛) × ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))⟶(fi‘𝐴))
127125, 126sylib 207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴) → (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)):(((rec(𝑅, 𝐴) ↾ ω)‘𝑛) × ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))⟶(fi‘𝐴))
128 frn 5966 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)):(((rec(𝑅, 𝐴) ↾ ω)‘𝑛) × ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))⟶(fi‘𝐴) → ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)) ⊆ (fi‘𝐴))
129127, 128syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴) → ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)) ⊆ (fi‘𝐴))
130129adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑛 ∈ ω ∧ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴)) → ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ↦ (𝑎𝑏)) ⊆ (fi‘𝐴))
131103, 130eqsstrd 3602 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑛 ∈ ω ∧ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴)) → ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛) ⊆ (fi‘𝐴))
132118, 131jctild 564 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛 ∈ ω ∧ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴)) → (∀𝑦𝑛 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) → (((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛) ⊆ (fi‘𝐴) ∧ ∀𝑦 ∈ suc 𝑛((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛))))
133132expimpd 627 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ ω → ((((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴) ∧ ∀𝑦𝑛 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)) → (((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛) ⊆ (fi‘𝐴) ∧ ∀𝑦 ∈ suc 𝑛((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛))))
134133a1d 25 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ ω → (𝐴𝑉 → ((((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ (fi‘𝐴) ∧ ∀𝑦𝑛 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)) → (((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛) ⊆ (fi‘𝐴) ∧ ∀𝑦 ∈ suc 𝑛((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘suc 𝑛)))))
13537, 42, 47, 49, 134finds2 6986 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ω → (𝐴𝑉 → (((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ⊆ (fi‘𝐴) ∧ ∀𝑦𝑥 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥))))
136135impcom 445 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴𝑉𝑥 ∈ ω) → (((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ⊆ (fi‘𝐴) ∧ ∀𝑦𝑥 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥)))
137136simprd 478 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴𝑉𝑥 ∈ ω) → ∀𝑦𝑥 ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥))
138137r19.21bi 2916 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝑉𝑥 ∈ ω) ∧ 𝑦𝑥) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥))
139138ex 449 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑉𝑥 ∈ ω) → (𝑦𝑥 → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥)))
140139adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑉𝑥 ∈ ω) ∧ 𝑦 ∈ ω) → (𝑦𝑥 → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥)))
141 fveq2 6103 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑥 → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) = ((rec(𝑅, 𝐴) ↾ ω)‘𝑥))
142 eqimss 3620 . . . . . . . . . . . . . . . . . . . 20 (((rec(𝑅, 𝐴) ↾ ω)‘𝑦) = ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥))
143141, 142syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑥 → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥))
144143a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑉𝑥 ∈ ω) ∧ 𝑦 ∈ ω) → (𝑦 = 𝑥 → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥)))
145140, 144jaod 394 . . . . . . . . . . . . . . . . 17 (((𝐴𝑉𝑥 ∈ ω) ∧ 𝑦 ∈ ω) → ((𝑦𝑥𝑦 = 𝑥) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥)))
14632, 145sylbid 229 . . . . . . . . . . . . . . . 16 (((𝐴𝑉𝑥 ∈ ω) ∧ 𝑦 ∈ ω) → (𝑦𝑥 → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥)))
147146ralrimiva 2949 . . . . . . . . . . . . . . 15 ((𝐴𝑉𝑥 ∈ ω) → ∀𝑦 ∈ ω (𝑦𝑥 → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥)))
148147ralrimiva 2949 . . . . . . . . . . . . . 14 (𝐴𝑉 → ∀𝑥 ∈ ω ∀𝑦 ∈ ω (𝑦𝑥 → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥)))
149148adantr 480 . . . . . . . . . . . . 13 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) → ∀𝑥 ∈ ω ∀𝑦 ∈ ω (𝑦𝑥 → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥)))
150 ssun1 3738 . . . . . . . . . . . . . 14 𝑚 ⊆ (𝑚𝑛)
151150a1i 11 . . . . . . . . . . . . 13 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) → 𝑚 ⊆ (𝑚𝑛))
152 sseq2 3590 . . . . . . . . . . . . . . 15 (𝑥 = (𝑚𝑛) → (𝑦𝑥𝑦 ⊆ (𝑚𝑛)))
153 fveq2 6103 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑚𝑛) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) = ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))
154153sseq2d 3596 . . . . . . . . . . . . . . 15 (𝑥 = (𝑚𝑛) → (((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ↔ ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))))
155152, 154imbi12d 333 . . . . . . . . . . . . . 14 (𝑥 = (𝑚𝑛) → ((𝑦𝑥 → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥)) ↔ (𝑦 ⊆ (𝑚𝑛) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))))
156 sseq1 3589 . . . . . . . . . . . . . . 15 (𝑦 = 𝑚 → (𝑦 ⊆ (𝑚𝑛) ↔ 𝑚 ⊆ (𝑚𝑛)))
157 fveq2 6103 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑚 → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) = ((rec(𝑅, 𝐴) ↾ ω)‘𝑚))
158157sseq1d 3595 . . . . . . . . . . . . . . 15 (𝑦 = 𝑚 → (((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↔ ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))))
159156, 158imbi12d 333 . . . . . . . . . . . . . 14 (𝑦 = 𝑚 → ((𝑦 ⊆ (𝑚𝑛) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))) ↔ (𝑚 ⊆ (𝑚𝑛) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))))
160155, 159rspc2v 3293 . . . . . . . . . . . . 13 (((𝑚𝑛) ∈ ω ∧ 𝑚 ∈ ω) → (∀𝑥 ∈ ω ∀𝑦 ∈ ω (𝑦𝑥 → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥)) → (𝑚 ⊆ (𝑚𝑛) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))))
16126, 149, 151, 160syl3c 64 . . . . . . . . . . . 12 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))
162161sseld 3567 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) → (𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) → 𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))))
163 simprr 792 . . . . . . . . . . . . . 14 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) → 𝑛 ∈ ω)
16424, 163jca 553 . . . . . . . . . . . . 13 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) → ((𝑚𝑛) ∈ ω ∧ 𝑛 ∈ ω))
165 ssun2 3739 . . . . . . . . . . . . . 14 𝑛 ⊆ (𝑚𝑛)
166165a1i 11 . . . . . . . . . . . . 13 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) → 𝑛 ⊆ (𝑚𝑛))
167 sseq1 3589 . . . . . . . . . . . . . . 15 (𝑦 = 𝑛 → (𝑦 ⊆ (𝑚𝑛) ↔ 𝑛 ⊆ (𝑚𝑛)))
168109sseq1d 3595 . . . . . . . . . . . . . . 15 (𝑦 = 𝑛 → (((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↔ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))))
169167, 168imbi12d 333 . . . . . . . . . . . . . 14 (𝑦 = 𝑛 → ((𝑦 ⊆ (𝑚𝑛) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))) ↔ (𝑛 ⊆ (𝑚𝑛) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))))
170155, 169rspc2v 3293 . . . . . . . . . . . . 13 (((𝑚𝑛) ∈ ω ∧ 𝑛 ∈ ω) → (∀𝑥 ∈ ω ∀𝑦 ∈ ω (𝑦𝑥 → ((rec(𝑅, 𝐴) ↾ ω)‘𝑦) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥)) → (𝑛 ⊆ (𝑚𝑛) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))))
171164, 149, 166, 170syl3c 64 . . . . . . . . . . . 12 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))
172171sseld 3567 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) → (𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛) → 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))))
17323ad2antlr 759 . . . . . . . . . . . . . . 15 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) ∧ (𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))) → (𝑚𝑛) ∈ ω)
174 peano2 6978 . . . . . . . . . . . . . . 15 ((𝑚𝑛) ∈ ω → suc (𝑚𝑛) ∈ ω)
175 fveq2 6103 . . . . . . . . . . . . . . . 16 (𝑥 = suc (𝑚𝑛) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) = ((rec(𝑅, 𝐴) ↾ ω)‘suc (𝑚𝑛)))
176175ssiun2s 4500 . . . . . . . . . . . . . . 15 (suc (𝑚𝑛) ∈ ω → ((rec(𝑅, 𝐴) ↾ ω)‘suc (𝑚𝑛)) ⊆ 𝑥 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑥))
177173, 174, 1763syl 18 . . . . . . . . . . . . . 14 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) ∧ (𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))) → ((rec(𝑅, 𝐴) ↾ ω)‘suc (𝑚𝑛)) ⊆ 𝑥 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑥))
178 simprl 790 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) ∧ (𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))) → 𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))
179 simprr 792 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) ∧ (𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))) → 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))
180 eqidd 2611 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) ∧ (𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))) → (𝑐𝑑) = (𝑐𝑑))
181 ineq1 3769 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑐 → (𝑎𝑏) = (𝑐𝑏))
182181eqeq2d 2620 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑐 → ((𝑐𝑑) = (𝑎𝑏) ↔ (𝑐𝑑) = (𝑐𝑏)))
183 ineq2 3770 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = 𝑑 → (𝑐𝑏) = (𝑐𝑑))
184183eqeq2d 2620 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑑 → ((𝑐𝑑) = (𝑐𝑏) ↔ (𝑐𝑑) = (𝑐𝑑)))
185182, 184rspc2ev 3295 . . . . . . . . . . . . . . . . . 18 ((𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∧ (𝑐𝑑) = (𝑐𝑑)) → ∃𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))∃𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))(𝑐𝑑) = (𝑎𝑏))
186178, 179, 180, 185syl3anc 1318 . . . . . . . . . . . . . . . . 17 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) ∧ (𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))) → ∃𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))∃𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))(𝑐𝑑) = (𝑎𝑏))
187 vex 3176 . . . . . . . . . . . . . . . . . . 19 𝑐 ∈ V
188187inex1 4727 . . . . . . . . . . . . . . . . . 18 (𝑐𝑑) ∈ V
189 eqeq1 2614 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑐𝑑) → (𝑥 = (𝑎𝑏) ↔ (𝑐𝑑) = (𝑎𝑏)))
1901892rexbidv 3039 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑐𝑑) → (∃𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))∃𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))𝑥 = (𝑎𝑏) ↔ ∃𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))∃𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))(𝑐𝑑) = (𝑎𝑏)))
191188, 190elab 3319 . . . . . . . . . . . . . . . . 17 ((𝑐𝑑) ∈ {𝑥 ∣ ∃𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))∃𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))𝑥 = (𝑎𝑏)} ↔ ∃𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))∃𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))(𝑐𝑑) = (𝑎𝑏))
192186, 191sylibr 223 . . . . . . . . . . . . . . . 16 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) ∧ (𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))) → (𝑐𝑑) ∈ {𝑥 ∣ ∃𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))∃𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))𝑥 = (𝑎𝑏)})
193 eqid 2610 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↦ (𝑎𝑏)) = (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↦ (𝑎𝑏))
194193rnmpt2 6668 . . . . . . . . . . . . . . . 16 ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↦ (𝑎𝑏)) = {𝑥 ∣ ∃𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))∃𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))𝑥 = (𝑎𝑏)}
195192, 194syl6eleqr 2699 . . . . . . . . . . . . . . 15 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) ∧ (𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))) → (𝑐𝑑) ∈ ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↦ (𝑎𝑏)))
196 fvex 6113 . . . . . . . . . . . . . . . . . . 19 ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∈ V
197196uniex 6851 . . . . . . . . . . . . . . . . . 18 ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∈ V
198197pwex 4774 . . . . . . . . . . . . . . . . 17 𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∈ V
199 elssuni 4403 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) → 𝑎 ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))
20069, 199syl5ss 3579 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) → (𝑎𝑏) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))
20174elpw 4114 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎𝑏) ∈ 𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↔ (𝑎𝑏) ⊆ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))
202200, 201sylibr 223 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) → (𝑎𝑏) ∈ 𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))
203202adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∧ 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))) → (𝑎𝑏) ∈ 𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))
204203rgen2a 2960 . . . . . . . . . . . . . . . . . . 19 𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))∀𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))(𝑎𝑏) ∈ 𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))
205193fmpt2 7126 . . . . . . . . . . . . . . . . . . 19 (∀𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))∀𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))(𝑎𝑏) ∈ 𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↔ (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↦ (𝑎𝑏)):(((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) × ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))⟶𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))
206204, 205mpbi 219 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↦ (𝑎𝑏)):(((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) × ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))⟶𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))
207 frn 5966 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↦ (𝑎𝑏)):(((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) × ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))⟶𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) → ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↦ (𝑎𝑏)) ⊆ 𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))
208206, 207ax-mp 5 . . . . . . . . . . . . . . . . 17 ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↦ (𝑎𝑏)) ⊆ 𝒫 ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))
209198, 208ssexi 4731 . . . . . . . . . . . . . . . 16 ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↦ (𝑎𝑏)) ∈ V
210 nfcv 2751 . . . . . . . . . . . . . . . . 17 𝑣(𝑚𝑛)
211 nfcv 2751 . . . . . . . . . . . . . . . . 17 𝑣ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↦ (𝑎𝑏))
212 mpt2eq12 6613 . . . . . . . . . . . . . . . . . . 19 ((𝑣 = ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∧ 𝑣 = ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))) → (𝑎𝑣, 𝑏𝑣 ↦ (𝑎𝑏)) = (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↦ (𝑎𝑏)))
213212anidms 675 . . . . . . . . . . . . . . . . . 18 (𝑣 = ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) → (𝑎𝑣, 𝑏𝑣 ↦ (𝑎𝑏)) = (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↦ (𝑎𝑏)))
214213rneqd 5274 . . . . . . . . . . . . . . . . 17 (𝑣 = ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) → ran (𝑎𝑣, 𝑏𝑣 ↦ (𝑎𝑏)) = ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↦ (𝑎𝑏)))
21583, 210, 211, 98, 214frsucmpt 7420 . . . . . . . . . . . . . . . 16 (((𝑚𝑛) ∈ ω ∧ ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↦ (𝑎𝑏)) ∈ V) → ((rec(𝑅, 𝐴) ↾ ω)‘suc (𝑚𝑛)) = ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↦ (𝑎𝑏)))
216173, 209, 215sylancl 693 . . . . . . . . . . . . . . 15 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) ∧ (𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))) → ((rec(𝑅, 𝐴) ↾ ω)‘suc (𝑚𝑛)) = ran (𝑎 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)), 𝑏 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ↦ (𝑎𝑏)))
217195, 216eleqtrrd 2691 . . . . . . . . . . . . . 14 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) ∧ (𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))) → (𝑐𝑑) ∈ ((rec(𝑅, 𝐴) ↾ ω)‘suc (𝑚𝑛)))
218177, 217sseldd 3569 . . . . . . . . . . . . 13 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) ∧ (𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))) → (𝑐𝑑) ∈ 𝑥 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑥))
219 fniunfv 6409 . . . . . . . . . . . . . 14 ((rec(𝑅, 𝐴) ↾ ω) Fn ω → 𝑥 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) = ran (rec(𝑅, 𝐴) ↾ ω))
2203, 219ax-mp 5 . . . . . . . . . . . . 13 𝑥 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) = ran (rec(𝑅, 𝐴) ↾ ω)
221218, 220syl6eleq 2698 . . . . . . . . . . . 12 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) ∧ (𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)))) → (𝑐𝑑) ∈ ran (rec(𝑅, 𝐴) ↾ ω))
222221ex 449 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) → ((𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛)) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘(𝑚𝑛))) → (𝑐𝑑) ∈ ran (rec(𝑅, 𝐴) ↾ ω)))
223162, 172, 222syl2and 499 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑛 ∈ ω)) → ((𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)) → (𝑐𝑑) ∈ ran (rec(𝑅, 𝐴) ↾ ω)))
224223rexlimdvva 3020 . . . . . . . . 9 (𝐴𝑉 → (∃𝑚 ∈ ω ∃𝑛 ∈ ω (𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛)) → (𝑐𝑑) ∈ ran (rec(𝑅, 𝐴) ↾ ω)))
225224imp 444 . . . . . . . 8 ((𝐴𝑉 ∧ ∃𝑚 ∈ ω ∃𝑛 ∈ ω (𝑐 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑚) ∧ 𝑑 ∈ ((rec(𝑅, 𝐴) ↾ ω)‘𝑛))) → (𝑐𝑑) ∈ ran (rec(𝑅, 𝐴) ↾ ω))
22620, 225sylan2br 492 . . . . . . 7 ((𝐴𝑉 ∧ (𝑐 ran (rec(𝑅, 𝐴) ↾ ω) ∧ 𝑑 ran (rec(𝑅, 𝐴) ↾ ω))) → (𝑐𝑑) ∈ ran (rec(𝑅, 𝐴) ↾ ω))
227226ralrimivva 2954 . . . . . 6 (𝐴𝑉 → ∀𝑐 ran (rec(𝑅, 𝐴) ↾ ω)∀𝑑 ran (rec(𝑅, 𝐴) ↾ ω)(𝑐𝑑) ∈ ran (rec(𝑅, 𝐴) ↾ ω))
228136simpld 474 . . . . . . . . . . . 12 ((𝐴𝑉𝑥 ∈ ω) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ⊆ (fi‘𝐴))
229 fvex 6113 . . . . . . . . . . . . 13 (fi‘𝐴) ∈ V
230229elpw2 4755 . . . . . . . . . . . 12 (((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ∈ 𝒫 (fi‘𝐴) ↔ ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ⊆ (fi‘𝐴))
231228, 230sylibr 223 . . . . . . . . . . 11 ((𝐴𝑉𝑥 ∈ ω) → ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ∈ 𝒫 (fi‘𝐴))
232231ralrimiva 2949 . . . . . . . . . 10 (𝐴𝑉 → ∀𝑥 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ∈ 𝒫 (fi‘𝐴))
233 fnfvrnss 6297 . . . . . . . . . 10 (((rec(𝑅, 𝐴) ↾ ω) Fn ω ∧ ∀𝑥 ∈ ω ((rec(𝑅, 𝐴) ↾ ω)‘𝑥) ∈ 𝒫 (fi‘𝐴)) → ran (rec(𝑅, 𝐴) ↾ ω) ⊆ 𝒫 (fi‘𝐴))
2343, 232, 233sylancr 694 . . . . . . . . 9 (𝐴𝑉 → ran (rec(𝑅, 𝐴) ↾ ω) ⊆ 𝒫 (fi‘𝐴))
235 sspwuni 4547 . . . . . . . . 9 (ran (rec(𝑅, 𝐴) ↾ ω) ⊆ 𝒫 (fi‘𝐴) ↔ ran (rec(𝑅, 𝐴) ↾ ω) ⊆ (fi‘𝐴))
236234, 235sylib 207 . . . . . . . 8 (𝐴𝑉 ran (rec(𝑅, 𝐴) ↾ ω) ⊆ (fi‘𝐴))
237 ssexg 4732 . . . . . . . 8 (( ran (rec(𝑅, 𝐴) ↾ ω) ⊆ (fi‘𝐴) ∧ (fi‘𝐴) ∈ V) → ran (rec(𝑅, 𝐴) ↾ ω) ∈ V)
238236, 229, 237sylancl 693 . . . . . . 7 (𝐴𝑉 ran (rec(𝑅, 𝐴) ↾ ω) ∈ V)
239 sseq2 3590 . . . . . . . . 9 (𝑥 = ran (rec(𝑅, 𝐴) ↾ ω) → (𝐴𝑥𝐴 ran (rec(𝑅, 𝐴) ↾ ω)))
240 eleq2 2677 . . . . . . . . . . 11 (𝑥 = ran (rec(𝑅, 𝐴) ↾ ω) → ((𝑐𝑑) ∈ 𝑥 ↔ (𝑐𝑑) ∈ ran (rec(𝑅, 𝐴) ↾ ω)))
241240raleqbi1dv 3123 . . . . . . . . . 10 (𝑥 = ran (rec(𝑅, 𝐴) ↾ ω) → (∀𝑑𝑥 (𝑐𝑑) ∈ 𝑥 ↔ ∀𝑑 ran (rec(𝑅, 𝐴) ↾ ω)(𝑐𝑑) ∈ ran (rec(𝑅, 𝐴) ↾ ω)))
242241raleqbi1dv 3123 . . . . . . . . 9 (𝑥 = ran (rec(𝑅, 𝐴) ↾ ω) → (∀𝑐𝑥𝑑𝑥 (𝑐𝑑) ∈ 𝑥 ↔ ∀𝑐 ran (rec(𝑅, 𝐴) ↾ ω)∀𝑑 ran (rec(𝑅, 𝐴) ↾ ω)(𝑐𝑑) ∈ ran (rec(𝑅, 𝐴) ↾ ω)))
243239, 242anbi12d 743 . . . . . . . 8 (𝑥 = ran (rec(𝑅, 𝐴) ↾ ω) → ((𝐴𝑥 ∧ ∀𝑐𝑥𝑑𝑥 (𝑐𝑑) ∈ 𝑥) ↔ (𝐴 ran (rec(𝑅, 𝐴) ↾ ω) ∧ ∀𝑐 ran (rec(𝑅, 𝐴) ↾ ω)∀𝑑 ran (rec(𝑅, 𝐴) ↾ ω)(𝑐𝑑) ∈ ran (rec(𝑅, 𝐴) ↾ ω))))
244243elabg 3320 . . . . . . 7 ( ran (rec(𝑅, 𝐴) ↾ ω) ∈ V → ( ran (rec(𝑅, 𝐴) ↾ ω) ∈ {𝑥 ∣ (𝐴𝑥 ∧ ∀𝑐𝑥𝑑𝑥 (𝑐𝑑) ∈ 𝑥)} ↔ (𝐴 ran (rec(𝑅, 𝐴) ↾ ω) ∧ ∀𝑐 ran (rec(𝑅, 𝐴) ↾ ω)∀𝑑 ran (rec(𝑅, 𝐴) ↾ ω)(𝑐𝑑) ∈ ran (rec(𝑅, 𝐴) ↾ ω))))
245238, 244syl 17 . . . . . 6 (𝐴𝑉 → ( ran (rec(𝑅, 𝐴) ↾ ω) ∈ {𝑥 ∣ (𝐴𝑥 ∧ ∀𝑐𝑥𝑑𝑥 (𝑐𝑑) ∈ 𝑥)} ↔ (𝐴 ran (rec(𝑅, 𝐴) ↾ ω) ∧ ∀𝑐 ran (rec(𝑅, 𝐴) ↾ ω)∀𝑑 ran (rec(𝑅, 𝐴) ↾ ω)(𝑐𝑑) ∈ ran (rec(𝑅, 𝐴) ↾ ω))))
2469, 227, 245mpbir2and 959 . . . . 5 (𝐴𝑉 ran (rec(𝑅, 𝐴) ↾ ω) ∈ {𝑥 ∣ (𝐴𝑥 ∧ ∀𝑐𝑥𝑑𝑥 (𝑐𝑑) ∈ 𝑥)})
247 intss1 4427 . . . . 5 ( ran (rec(𝑅, 𝐴) ↾ ω) ∈ {𝑥 ∣ (𝐴𝑥 ∧ ∀𝑐𝑥𝑑𝑥 (𝑐𝑑) ∈ 𝑥)} → {𝑥 ∣ (𝐴𝑥 ∧ ∀𝑐𝑥𝑑𝑥 (𝑐𝑑) ∈ 𝑥)} ⊆ ran (rec(𝑅, 𝐴) ↾ ω))
248246, 247syl 17 . . . 4 (𝐴𝑉 {𝑥 ∣ (𝐴𝑥 ∧ ∀𝑐𝑥𝑑𝑥 (𝑐𝑑) ∈ 𝑥)} ⊆ ran (rec(𝑅, 𝐴) ↾ ω))
2491, 248eqsstrd 3602 . . 3 (𝐴𝑉 → (fi‘𝐴) ⊆ ran (rec(𝑅, 𝐴) ↾ ω))
250249, 236eqssd 3585 . 2 (𝐴𝑉 → (fi‘𝐴) = ran (rec(𝑅, 𝐴) ↾ ω))
251 df-ima 5051 . . 3 (rec(𝑅, 𝐴) “ ω) = ran (rec(𝑅, 𝐴) ↾ ω)
252251unieqi 4381 . 2 (rec(𝑅, 𝐴) “ ω) = ran (rec(𝑅, 𝐴) ↾ ω)
253250, 252syl6eqr 2662 1 (𝐴𝑉 → (fi‘𝐴) = (rec(𝑅, 𝐴) “ ω))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  {cab 2596  wral 2896  wrex 2897  Vcvv 3173  cun 3538  cin 3539  wss 3540  c0 3874  𝒫 cpw 4108  {csn 4125   cuni 4372   cint 4410   ciun 4455  cmpt 4643   × cxp 5036  ran crn 5039  cres 5040  cima 5041  Ord word 5639  Oncon0 5640  suc csuc 5642   Fn wfn 5799  wf 5800  cfv 5804  cmpt2 6551  ωcom 6957  reccrdg 7392  ficfi 8199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-fin 7845  df-fi 8200
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator