Step | Hyp | Ref
| Expression |
1 | | elex 3185 |
. 2
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) |
2 | | vex 3176 |
. . . . . . . . . 10
⊢ 𝑡 ∈ V |
3 | | elfi 8202 |
. . . . . . . . . 10
⊢ ((𝑡 ∈ V ∧ 𝐴 ∈ V) → (𝑡 ∈ (fi‘𝐴) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑡 = ∩ 𝑥)) |
4 | 2, 3 | mpan 702 |
. . . . . . . . 9
⊢ (𝐴 ∈ V → (𝑡 ∈ (fi‘𝐴) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑡 = ∩ 𝑥)) |
5 | 4 | biimpd 218 |
. . . . . . . 8
⊢ (𝐴 ∈ V → (𝑡 ∈ (fi‘𝐴) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑡 = ∩ 𝑥)) |
6 | | df-rex 2902 |
. . . . . . . . 9
⊢
(∃𝑥 ∈
(𝒫 𝐴 ∩
Fin)𝑡 = ∩ 𝑥
↔ ∃𝑥(𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = ∩
𝑥)) |
7 | | fiint 8122 |
. . . . . . . . . . . 12
⊢
(∀𝑥 ∈
𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧 ↔ ∀𝑥((𝑥 ⊆ 𝑧 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → ∩ 𝑥
∈ 𝑧)) |
8 | | inss1 3795 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(𝒫 𝐴 ∩
Fin) ⊆ 𝒫 𝐴 |
9 | 8 | sseli 3564 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ 𝒫 𝐴) |
10 | 9 | elpwid 4118 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ⊆ 𝐴) |
11 | 10 | 3ad2ant2 1076 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ⊆ 𝑧 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = ∩ 𝑥) → 𝑥 ⊆ 𝐴) |
12 | | simp1 1054 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ⊆ 𝑧 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = ∩ 𝑥) → 𝐴 ⊆ 𝑧) |
13 | 11, 12 | sstrd 3578 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ⊆ 𝑧 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = ∩ 𝑥) → 𝑥 ⊆ 𝑧) |
14 | | eqvisset 3184 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 = ∩
𝑥 → ∩ 𝑥
∈ V) |
15 | | intex 4747 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ≠ ∅ ↔ ∩ 𝑥
∈ V) |
16 | 14, 15 | sylibr 223 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 = ∩
𝑥 → 𝑥 ≠ ∅) |
17 | 16 | 3ad2ant3 1077 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ⊆ 𝑧 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = ∩ 𝑥) → 𝑥 ≠ ∅) |
18 | | inss2 3796 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(𝒫 𝐴 ∩
Fin) ⊆ Fin |
19 | 18 | sseli 3564 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ Fin) |
20 | 19 | 3ad2ant2 1076 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ⊆ 𝑧 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = ∩ 𝑥) → 𝑥 ∈ Fin) |
21 | 13, 17, 20 | 3jca 1235 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ⊆ 𝑧 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = ∩ 𝑥) → (𝑥 ⊆ 𝑧 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin)) |
22 | 21 | 3expib 1260 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ⊆ 𝑧 → ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = ∩ 𝑥) → (𝑥 ⊆ 𝑧 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin))) |
23 | | pm2.27 41 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ⊆ 𝑧 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → (((𝑥 ⊆ 𝑧 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → ∩ 𝑥
∈ 𝑧) → ∩ 𝑥
∈ 𝑧)) |
24 | 22, 23 | syl6 34 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ⊆ 𝑧 → ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = ∩ 𝑥) → (((𝑥 ⊆ 𝑧 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → ∩ 𝑥
∈ 𝑧) → ∩ 𝑥
∈ 𝑧))) |
25 | | eleq1 2676 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = ∩
𝑥 → (𝑡 ∈ 𝑧 ↔ ∩ 𝑥 ∈ 𝑧)) |
26 | 25 | biimprd 237 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 = ∩
𝑥 → (∩ 𝑥
∈ 𝑧 → 𝑡 ∈ 𝑧)) |
27 | 26 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = ∩
𝑥) → (∩ 𝑥
∈ 𝑧 → 𝑡 ∈ 𝑧)) |
28 | 27 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ⊆ 𝑧 → ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = ∩ 𝑥) → (∩ 𝑥
∈ 𝑧 → 𝑡 ∈ 𝑧))) |
29 | 24, 28 | syldd 70 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ⊆ 𝑧 → ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = ∩ 𝑥) → (((𝑥 ⊆ 𝑧 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → ∩ 𝑥
∈ 𝑧) → 𝑡 ∈ 𝑧))) |
30 | 29 | com23 84 |
. . . . . . . . . . . . 13
⊢ (𝐴 ⊆ 𝑧 → (((𝑥 ⊆ 𝑧 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → ∩ 𝑥
∈ 𝑧) → ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = ∩
𝑥) → 𝑡 ∈ 𝑧))) |
31 | 30 | alimdv 1832 |
. . . . . . . . . . . 12
⊢ (𝐴 ⊆ 𝑧 → (∀𝑥((𝑥 ⊆ 𝑧 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → ∩ 𝑥
∈ 𝑧) →
∀𝑥((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = ∩
𝑥) → 𝑡 ∈ 𝑧))) |
32 | 7, 31 | syl5bi 231 |
. . . . . . . . . . 11
⊢ (𝐴 ⊆ 𝑧 → (∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧 → ∀𝑥((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = ∩ 𝑥) → 𝑡 ∈ 𝑧))) |
33 | 32 | imp 444 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧) → ∀𝑥((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = ∩ 𝑥) → 𝑡 ∈ 𝑧)) |
34 | | 19.23v 1889 |
. . . . . . . . . 10
⊢
(∀𝑥((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = ∩
𝑥) → 𝑡 ∈ 𝑧) ↔ (∃𝑥(𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = ∩ 𝑥) → 𝑡 ∈ 𝑧)) |
35 | 33, 34 | sylib 207 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧) → (∃𝑥(𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = ∩ 𝑥) → 𝑡 ∈ 𝑧)) |
36 | 6, 35 | syl5bi 231 |
. . . . . . . 8
⊢ ((𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧) → (∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑡 = ∩ 𝑥 → 𝑡 ∈ 𝑧)) |
37 | 5, 36 | sylan9 687 |
. . . . . . 7
⊢ ((𝐴 ∈ V ∧ (𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧)) → (𝑡 ∈ (fi‘𝐴) → 𝑡 ∈ 𝑧)) |
38 | 37 | ssrdv 3574 |
. . . . . 6
⊢ ((𝐴 ∈ V ∧ (𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧)) → (fi‘𝐴) ⊆ 𝑧) |
39 | 38 | ex 449 |
. . . . 5
⊢ (𝐴 ∈ V → ((𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧) → (fi‘𝐴) ⊆ 𝑧)) |
40 | 39 | alrimiv 1842 |
. . . 4
⊢ (𝐴 ∈ V → ∀𝑧((𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧) → (fi‘𝐴) ⊆ 𝑧)) |
41 | | ssintab 4429 |
. . . 4
⊢
((fi‘𝐴)
⊆ ∩ {𝑧 ∣ (𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧)} ↔ ∀𝑧((𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧) → (fi‘𝐴) ⊆ 𝑧)) |
42 | 40, 41 | sylibr 223 |
. . 3
⊢ (𝐴 ∈ V → (fi‘𝐴) ⊆ ∩ {𝑧
∣ (𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧)}) |
43 | | ssfii 8208 |
. . . . 5
⊢ (𝐴 ∈ V → 𝐴 ⊆ (fi‘𝐴)) |
44 | | fiin 8211 |
. . . . . . 7
⊢ ((𝑥 ∈ (fi‘𝐴) ∧ 𝑦 ∈ (fi‘𝐴)) → (𝑥 ∩ 𝑦) ∈ (fi‘𝐴)) |
45 | 44 | rgen2a 2960 |
. . . . . 6
⊢
∀𝑥 ∈
(fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)(𝑥 ∩ 𝑦) ∈ (fi‘𝐴) |
46 | 45 | a1i 11 |
. . . . 5
⊢ (𝐴 ∈ V → ∀𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)(𝑥 ∩ 𝑦) ∈ (fi‘𝐴)) |
47 | | fvex 6113 |
. . . . . 6
⊢
(fi‘𝐴) ∈
V |
48 | | sseq2 3590 |
. . . . . . 7
⊢ (𝑧 = (fi‘𝐴) → (𝐴 ⊆ 𝑧 ↔ 𝐴 ⊆ (fi‘𝐴))) |
49 | | eleq2 2677 |
. . . . . . . . 9
⊢ (𝑧 = (fi‘𝐴) → ((𝑥 ∩ 𝑦) ∈ 𝑧 ↔ (𝑥 ∩ 𝑦) ∈ (fi‘𝐴))) |
50 | 49 | raleqbi1dv 3123 |
. . . . . . . 8
⊢ (𝑧 = (fi‘𝐴) → (∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧 ↔ ∀𝑦 ∈ (fi‘𝐴)(𝑥 ∩ 𝑦) ∈ (fi‘𝐴))) |
51 | 50 | raleqbi1dv 3123 |
. . . . . . 7
⊢ (𝑧 = (fi‘𝐴) → (∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧 ↔ ∀𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)(𝑥 ∩ 𝑦) ∈ (fi‘𝐴))) |
52 | 48, 51 | anbi12d 743 |
. . . . . 6
⊢ (𝑧 = (fi‘𝐴) → ((𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧) ↔ (𝐴 ⊆ (fi‘𝐴) ∧ ∀𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)(𝑥 ∩ 𝑦) ∈ (fi‘𝐴)))) |
53 | 47, 52 | elab 3319 |
. . . . 5
⊢
((fi‘𝐴) ∈
{𝑧 ∣ (𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧)} ↔ (𝐴 ⊆ (fi‘𝐴) ∧ ∀𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)(𝑥 ∩ 𝑦) ∈ (fi‘𝐴))) |
54 | 43, 46, 53 | sylanbrc 695 |
. . . 4
⊢ (𝐴 ∈ V → (fi‘𝐴) ∈ {𝑧 ∣ (𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧)}) |
55 | | intss1 4427 |
. . . 4
⊢
((fi‘𝐴) ∈
{𝑧 ∣ (𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧)} → ∩ {𝑧 ∣ (𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧)} ⊆ (fi‘𝐴)) |
56 | 54, 55 | syl 17 |
. . 3
⊢ (𝐴 ∈ V → ∩ {𝑧
∣ (𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧)} ⊆ (fi‘𝐴)) |
57 | 42, 56 | eqssd 3585 |
. 2
⊢ (𝐴 ∈ V → (fi‘𝐴) = ∩
{𝑧 ∣ (𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧)}) |
58 | 1, 57 | syl 17 |
1
⊢ (𝐴 ∈ 𝑉 → (fi‘𝐴) = ∩ {𝑧 ∣ (𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧)}) |