MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffi2 Structured version   Unicode version

Theorem dffi2 7901
Description: The set of finite intersections is the smallest set that contains  A and is closed under pairwise intersection. (Contributed by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
dffi2  |-  ( A  e.  V  ->  ( fi `  A )  = 
|^| { z  |  ( A  C_  z  /\  A. x  e.  z  A. y  e.  z  (
x  i^i  y )  e.  z ) } )
Distinct variable groups:    x, y,
z, A    y, V, z
Allowed substitution hint:    V( x)

Proof of Theorem dffi2
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 elex 3118 . 2  |-  ( A  e.  V  ->  A  e.  _V )
2 vex 3112 . . . . . . . . . 10  |-  t  e. 
_V
3 elfi 7891 . . . . . . . . . 10  |-  ( ( t  e.  _V  /\  A  e.  _V )  ->  ( t  e.  ( fi `  A )  <->  E. x  e.  ( ~P A  i^i  Fin )
t  =  |^| x
) )
42, 3mpan 670 . . . . . . . . 9  |-  ( A  e.  _V  ->  (
t  e.  ( fi
`  A )  <->  E. x  e.  ( ~P A  i^i  Fin ) t  =  |^| x ) )
54biimpd 207 . . . . . . . 8  |-  ( A  e.  _V  ->  (
t  e.  ( fi
`  A )  ->  E. x  e.  ( ~P A  i^i  Fin )
t  =  |^| x
) )
6 df-rex 2813 . . . . . . . . 9  |-  ( E. x  e.  ( ~P A  i^i  Fin )
t  =  |^| x  <->  E. x ( x  e.  ( ~P A  i^i  Fin )  /\  t  = 
|^| x ) )
7 fiint 7815 . . . . . . . . . . . 12  |-  ( A. x  e.  z  A. y  e.  z  (
x  i^i  y )  e.  z  <->  A. x ( ( x  C_  z  /\  x  =/=  (/)  /\  x  e. 
Fin )  ->  |^| x  e.  z ) )
8 inss1 3714 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ~P A  i^i  Fin )  C_ 
~P A
98sseli 3495 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  ( ~P A  i^i  Fin )  ->  x  e.  ~P A )
109elpwid 4025 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ( ~P A  i^i  Fin )  ->  x  C_  A )
11103ad2ant2 1018 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  C_  z  /\  x  e.  ( ~P A  i^i  Fin )  /\  t  =  |^| x )  ->  x  C_  A
)
12 simp1 996 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  C_  z  /\  x  e.  ( ~P A  i^i  Fin )  /\  t  =  |^| x )  ->  A  C_  z
)
1311, 12sstrd 3509 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  C_  z  /\  x  e.  ( ~P A  i^i  Fin )  /\  t  =  |^| x )  ->  x  C_  z
)
14 eqvisset 3117 . . . . . . . . . . . . . . . . . . . 20  |-  ( t  =  |^| x  ->  |^| x  e.  _V )
15 intex 4612 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =/=  (/)  <->  |^| x  e.  _V )
1614, 15sylibr 212 . . . . . . . . . . . . . . . . . . 19  |-  ( t  =  |^| x  ->  x  =/=  (/) )
17163ad2ant3 1019 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  C_  z  /\  x  e.  ( ~P A  i^i  Fin )  /\  t  =  |^| x )  ->  x  =/=  (/) )
18 inss2 3715 . . . . . . . . . . . . . . . . . . . 20  |-  ( ~P A  i^i  Fin )  C_ 
Fin
1918sseli 3495 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ( ~P A  i^i  Fin )  ->  x  e.  Fin )
20193ad2ant2 1018 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  C_  z  /\  x  e.  ( ~P A  i^i  Fin )  /\  t  =  |^| x )  ->  x  e.  Fin )
2113, 17, 203jca 1176 . . . . . . . . . . . . . . . . 17  |-  ( ( A  C_  z  /\  x  e.  ( ~P A  i^i  Fin )  /\  t  =  |^| x )  ->  ( x  C_  z  /\  x  =/=  (/)  /\  x  e.  Fin ) )
22213expib 1199 . . . . . . . . . . . . . . . 16  |-  ( A 
C_  z  ->  (
( x  e.  ( ~P A  i^i  Fin )  /\  t  =  |^| x )  ->  (
x  C_  z  /\  x  =/=  (/)  /\  x  e. 
Fin ) ) )
23 pm2.27 39 . . . . . . . . . . . . . . . 16  |-  ( ( x  C_  z  /\  x  =/=  (/)  /\  x  e. 
Fin )  ->  (
( ( x  C_  z  /\  x  =/=  (/)  /\  x  e.  Fin )  ->  |^| x  e.  z )  ->  |^| x  e.  z ) )
2422, 23syl6 33 . . . . . . . . . . . . . . 15  |-  ( A 
C_  z  ->  (
( x  e.  ( ~P A  i^i  Fin )  /\  t  =  |^| x )  ->  (
( ( x  C_  z  /\  x  =/=  (/)  /\  x  e.  Fin )  ->  |^| x  e.  z )  ->  |^| x  e.  z ) ) )
25 eleq1 2529 . . . . . . . . . . . . . . . . . 18  |-  ( t  =  |^| x  -> 
( t  e.  z  <->  |^| x  e.  z
) )
2625biimprd 223 . . . . . . . . . . . . . . . . 17  |-  ( t  =  |^| x  -> 
( |^| x  e.  z  ->  t  e.  z ) )
2726adantl 466 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( ~P A  i^i  Fin )  /\  t  =  |^| x )  ->  ( |^| x  e.  z  ->  t  e.  z ) )
2827a1i 11 . . . . . . . . . . . . . . 15  |-  ( A 
C_  z  ->  (
( x  e.  ( ~P A  i^i  Fin )  /\  t  =  |^| x )  ->  ( |^| x  e.  z  ->  t  e.  z ) ) )
2924, 28syldd 66 . . . . . . . . . . . . . 14  |-  ( A 
C_  z  ->  (
( x  e.  ( ~P A  i^i  Fin )  /\  t  =  |^| x )  ->  (
( ( x  C_  z  /\  x  =/=  (/)  /\  x  e.  Fin )  ->  |^| x  e.  z )  ->  t  e.  z ) ) )
3029com23 78 . . . . . . . . . . . . 13  |-  ( A 
C_  z  ->  (
( ( x  C_  z  /\  x  =/=  (/)  /\  x  e.  Fin )  ->  |^| x  e.  z )  ->  (
( x  e.  ( ~P A  i^i  Fin )  /\  t  =  |^| x )  ->  t  e.  z ) ) )
3130alimdv 1710 . . . . . . . . . . . 12  |-  ( A 
C_  z  ->  ( A. x ( ( x 
C_  z  /\  x  =/=  (/)  /\  x  e. 
Fin )  ->  |^| x  e.  z )  ->  A. x
( ( x  e.  ( ~P A  i^i  Fin )  /\  t  = 
|^| x )  -> 
t  e.  z ) ) )
327, 31syl5bi 217 . . . . . . . . . . 11  |-  ( A 
C_  z  ->  ( A. x  e.  z  A. y  e.  z 
( x  i^i  y
)  e.  z  ->  A. x ( ( x  e.  ( ~P A  i^i  Fin )  /\  t  =  |^| x )  -> 
t  e.  z ) ) )
3332imp 429 . . . . . . . . . 10  |-  ( ( A  C_  z  /\  A. x  e.  z  A. y  e.  z  (
x  i^i  y )  e.  z )  ->  A. x
( ( x  e.  ( ~P A  i^i  Fin )  /\  t  = 
|^| x )  -> 
t  e.  z ) )
34 19.23v 1761 . . . . . . . . . 10  |-  ( A. x ( ( x  e.  ( ~P A  i^i  Fin )  /\  t  =  |^| x )  -> 
t  e.  z )  <-> 
( E. x ( x  e.  ( ~P A  i^i  Fin )  /\  t  =  |^| x )  ->  t  e.  z ) )
3533, 34sylib 196 . . . . . . . . 9  |-  ( ( A  C_  z  /\  A. x  e.  z  A. y  e.  z  (
x  i^i  y )  e.  z )  ->  ( E. x ( x  e.  ( ~P A  i^i  Fin )  /\  t  = 
|^| x )  -> 
t  e.  z ) )
366, 35syl5bi 217 . . . . . . . 8  |-  ( ( A  C_  z  /\  A. x  e.  z  A. y  e.  z  (
x  i^i  y )  e.  z )  ->  ( E. x  e.  ( ~P A  i^i  Fin )
t  =  |^| x  ->  t  e.  z ) )
375, 36sylan9 657 . . . . . . 7  |-  ( ( A  e.  _V  /\  ( A  C_  z  /\  A. x  e.  z  A. y  e.  z  (
x  i^i  y )  e.  z ) )  -> 
( t  e.  ( fi `  A )  ->  t  e.  z ) )
3837ssrdv 3505 . . . . . 6  |-  ( ( A  e.  _V  /\  ( A  C_  z  /\  A. x  e.  z  A. y  e.  z  (
x  i^i  y )  e.  z ) )  -> 
( fi `  A
)  C_  z )
3938ex 434 . . . . 5  |-  ( A  e.  _V  ->  (
( A  C_  z  /\  A. x  e.  z 
A. y  e.  z  ( x  i^i  y
)  e.  z )  ->  ( fi `  A )  C_  z
) )
4039alrimiv 1720 . . . 4  |-  ( A  e.  _V  ->  A. z
( ( A  C_  z  /\  A. x  e.  z  A. y  e.  z  ( x  i^i  y )  e.  z )  ->  ( fi `  A )  C_  z
) )
41 ssintab 4305 . . . 4  |-  ( ( fi `  A ) 
C_  |^| { z  |  ( A  C_  z  /\  A. x  e.  z 
A. y  e.  z  ( x  i^i  y
)  e.  z ) }  <->  A. z ( ( A  C_  z  /\  A. x  e.  z  A. y  e.  z  (
x  i^i  y )  e.  z )  ->  ( fi `  A )  C_  z ) )
4240, 41sylibr 212 . . 3  |-  ( A  e.  _V  ->  ( fi `  A )  C_  |^|
{ z  |  ( A  C_  z  /\  A. x  e.  z  A. y  e.  z  (
x  i^i  y )  e.  z ) } )
43 ssfii 7897 . . . . 5  |-  ( A  e.  _V  ->  A  C_  ( fi `  A
) )
44 fiin 7900 . . . . . . 7  |-  ( ( x  e.  ( fi
`  A )  /\  y  e.  ( fi `  A ) )  -> 
( x  i^i  y
)  e.  ( fi
`  A ) )
4544rgen2a 2884 . . . . . 6  |-  A. x  e.  ( fi `  A
) A. y  e.  ( fi `  A
) ( x  i^i  y )  e.  ( fi `  A )
4645a1i 11 . . . . 5  |-  ( A  e.  _V  ->  A. x  e.  ( fi `  A
) A. y  e.  ( fi `  A
) ( x  i^i  y )  e.  ( fi `  A ) )
47 fvex 5882 . . . . . 6  |-  ( fi
`  A )  e. 
_V
48 sseq2 3521 . . . . . . 7  |-  ( z  =  ( fi `  A )  ->  ( A  C_  z  <->  A  C_  ( fi `  A ) ) )
49 eleq2 2530 . . . . . . . . 9  |-  ( z  =  ( fi `  A )  ->  (
( x  i^i  y
)  e.  z  <->  ( x  i^i  y )  e.  ( fi `  A ) ) )
5049raleqbi1dv 3062 . . . . . . . 8  |-  ( z  =  ( fi `  A )  ->  ( A. y  e.  z 
( x  i^i  y
)  e.  z  <->  A. y  e.  ( fi `  A
) ( x  i^i  y )  e.  ( fi `  A ) ) )
5150raleqbi1dv 3062 . . . . . . 7  |-  ( z  =  ( fi `  A )  ->  ( A. x  e.  z  A. y  e.  z 
( x  i^i  y
)  e.  z  <->  A. x  e.  ( fi `  A
) A. y  e.  ( fi `  A
) ( x  i^i  y )  e.  ( fi `  A ) ) )
5248, 51anbi12d 710 . . . . . 6  |-  ( z  =  ( fi `  A )  ->  (
( A  C_  z  /\  A. x  e.  z 
A. y  e.  z  ( x  i^i  y
)  e.  z )  <-> 
( A  C_  ( fi `  A )  /\  A. x  e.  ( fi
`  A ) A. y  e.  ( fi `  A ) ( x  i^i  y )  e.  ( fi `  A
) ) ) )
5347, 52elab 3246 . . . . 5  |-  ( ( fi `  A )  e.  { z  |  ( A  C_  z  /\  A. x  e.  z 
A. y  e.  z  ( x  i^i  y
)  e.  z ) }  <->  ( A  C_  ( fi `  A )  /\  A. x  e.  ( fi `  A
) A. y  e.  ( fi `  A
) ( x  i^i  y )  e.  ( fi `  A ) ) )
5443, 46, 53sylanbrc 664 . . . 4  |-  ( A  e.  _V  ->  ( fi `  A )  e. 
{ z  |  ( A  C_  z  /\  A. x  e.  z  A. y  e.  z  (
x  i^i  y )  e.  z ) } )
55 intss1 4303 . . . 4  |-  ( ( fi `  A )  e.  { z  |  ( A  C_  z  /\  A. x  e.  z 
A. y  e.  z  ( x  i^i  y
)  e.  z ) }  ->  |^| { z  |  ( A  C_  z  /\  A. x  e.  z  A. y  e.  z  ( x  i^i  y )  e.  z ) }  C_  ( fi `  A ) )
5654, 55syl 16 . . 3  |-  ( A  e.  _V  ->  |^| { z  |  ( A  C_  z  /\  A. x  e.  z  A. y  e.  z  ( x  i^i  y )  e.  z ) }  C_  ( fi `  A ) )
5742, 56eqssd 3516 . 2  |-  ( A  e.  _V  ->  ( fi `  A )  = 
|^| { z  |  ( A  C_  z  /\  A. x  e.  z  A. y  e.  z  (
x  i^i  y )  e.  z ) } )
581, 57syl 16 1  |-  ( A  e.  V  ->  ( fi `  A )  = 
|^| { z  |  ( A  C_  z  /\  A. x  e.  z  A. y  e.  z  (
x  i^i  y )  e.  z ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973   A.wal 1393    = wceq 1395   E.wex 1613    e. wcel 1819   {cab 2442    =/= wne 2652   A.wral 2807   E.wrex 2808   _Vcvv 3109    i^i cin 3470    C_ wss 3471   (/)c0 3793   ~Pcpw 4015   |^|cint 4288   ` cfv 5594   Fincfn 7535   ficfi 7888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-en 7536  df-fin 7539  df-fi 7889
This theorem is referenced by:  fiss  7902  inficl  7903  dffi3  7909  fbssfi  20464
  Copyright terms: Public domain W3C validator