Step | Hyp | Ref
| Expression |
1 | | dffi2 8212 |
. . . 4
⊢ (𝐹 ∈ (fBas‘𝑋) → (fi‘𝐹) = ∩
{𝑧 ∣ (𝐹 ⊆ 𝑧 ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ 𝑧 (𝑢 ∩ 𝑣) ∈ 𝑧)}) |
2 | | inss1 3795 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∩ 𝑣) ⊆ 𝑢 |
3 | | simp1r 1079 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 ∪ 𝐹)
∧ (𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑢) ∧ (𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑣)) → 𝑢 ∈ 𝒫 ∪ 𝐹) |
4 | 3 | elpwid 4118 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 ∪ 𝐹)
∧ (𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑢) ∧ (𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑣)) → 𝑢 ⊆ ∪ 𝐹) |
5 | 2, 4 | syl5ss 3579 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 ∪ 𝐹)
∧ (𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑢) ∧ (𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑣)) → (𝑢 ∩ 𝑣) ⊆ ∪ 𝐹) |
6 | | vex 3176 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑢 ∈ V |
7 | 6 | inex1 4727 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∩ 𝑣) ∈ V |
8 | 7 | elpw 4114 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑢 ∩ 𝑣) ∈ 𝒫 ∪ 𝐹
↔ (𝑢 ∩ 𝑣) ⊆ ∪ 𝐹) |
9 | 5, 8 | sylibr 223 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 ∪ 𝐹)
∧ (𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑢) ∧ (𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑣)) → (𝑢 ∩ 𝑣) ∈ 𝒫 ∪ 𝐹) |
10 | | simpl 472 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 ∪ 𝐹)
→ 𝐹 ∈
(fBas‘𝑋)) |
11 | | simpl 472 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑢) → 𝑦 ∈ 𝐹) |
12 | | simpl 472 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑣) → 𝑧 ∈ 𝐹) |
13 | | fbasssin 21450 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝑦 ∩ 𝑧)) |
14 | 10, 11, 12, 13 | syl3an 1360 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 ∪ 𝐹)
∧ (𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑢) ∧ (𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑣)) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝑦 ∩ 𝑧)) |
15 | | ss2in 3802 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ⊆ 𝑢 ∧ 𝑧 ⊆ 𝑣) → (𝑦 ∩ 𝑧) ⊆ (𝑢 ∩ 𝑣)) |
16 | 15 | ad2ant2l 778 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑢) ∧ (𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑣)) → (𝑦 ∩ 𝑧) ⊆ (𝑢 ∩ 𝑣)) |
17 | 16 | 3adant1 1072 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 ∪ 𝐹)
∧ (𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑢) ∧ (𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑣)) → (𝑦 ∩ 𝑧) ⊆ (𝑢 ∩ 𝑣)) |
18 | | sstr 3576 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ⊆ (𝑦 ∩ 𝑧) ∧ (𝑦 ∩ 𝑧) ⊆ (𝑢 ∩ 𝑣)) → 𝑥 ⊆ (𝑢 ∩ 𝑣)) |
19 | 18 | expcom 450 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∩ 𝑧) ⊆ (𝑢 ∩ 𝑣) → (𝑥 ⊆ (𝑦 ∩ 𝑧) → 𝑥 ⊆ (𝑢 ∩ 𝑣))) |
20 | 17, 19 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 ∪ 𝐹)
∧ (𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑢) ∧ (𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑣)) → (𝑥 ⊆ (𝑦 ∩ 𝑧) → 𝑥 ⊆ (𝑢 ∩ 𝑣))) |
21 | 20 | reximdv 2999 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 ∪ 𝐹)
∧ (𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑢) ∧ (𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑣)) → (∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝑦 ∩ 𝑧) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝑢 ∩ 𝑣))) |
22 | 14, 21 | mpd 15 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 ∪ 𝐹)
∧ (𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑢) ∧ (𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑣)) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝑢 ∩ 𝑣)) |
23 | | sseq2 3590 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 = (𝑢 ∩ 𝑣) → (𝑥 ⊆ 𝑡 ↔ 𝑥 ⊆ (𝑢 ∩ 𝑣))) |
24 | 23 | rexbidv 3034 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = (𝑢 ∩ 𝑣) → (∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 ↔ ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝑢 ∩ 𝑣))) |
25 | 24 | elrab 3331 |
. . . . . . . . . . . . . . 15
⊢ ((𝑢 ∩ 𝑣) ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} ↔ ((𝑢 ∩ 𝑣) ∈ 𝒫 ∪ 𝐹
∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝑢 ∩ 𝑣))) |
26 | 9, 22, 25 | sylanbrc 695 |
. . . . . . . . . . . . . 14
⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 ∪ 𝐹)
∧ (𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑢) ∧ (𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑣)) → (𝑢 ∩ 𝑣) ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡}) |
27 | 26 | 3expa 1257 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 ∪ 𝐹)
∧ (𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑢)) ∧ (𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑣)) → (𝑢 ∩ 𝑣) ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡}) |
28 | 27 | rexlimdvaa 3014 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 ∪ 𝐹)
∧ (𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑢)) → (∃𝑧 ∈ 𝐹 𝑧 ⊆ 𝑣 → (𝑢 ∩ 𝑣) ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡})) |
29 | 28 | ralrimivw 2950 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 ∪ 𝐹)
∧ (𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑢)) → ∀𝑣 ∈ 𝒫 ∪ 𝐹(∃𝑧 ∈ 𝐹 𝑧 ⊆ 𝑣 → (𝑢 ∩ 𝑣) ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡})) |
30 | | sseq2 3590 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = 𝑣 → (𝑥 ⊆ 𝑡 ↔ 𝑥 ⊆ 𝑣)) |
31 | 30 | rexbidv 3034 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑣 → (∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 ↔ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑣)) |
32 | | sseq1 3589 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → (𝑥 ⊆ 𝑣 ↔ 𝑧 ⊆ 𝑣)) |
33 | 32 | cbvrexv 3148 |
. . . . . . . . . . . . 13
⊢
(∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑣 ↔ ∃𝑧 ∈ 𝐹 𝑧 ⊆ 𝑣) |
34 | 31, 33 | syl6bb 275 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑣 → (∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 ↔ ∃𝑧 ∈ 𝐹 𝑧 ⊆ 𝑣)) |
35 | 34 | ralrab 3335 |
. . . . . . . . . . 11
⊢
(∀𝑣 ∈
{𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} (𝑢 ∩ 𝑣) ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} ↔ ∀𝑣 ∈ 𝒫 ∪ 𝐹(∃𝑧 ∈ 𝐹 𝑧 ⊆ 𝑣 → (𝑢 ∩ 𝑣) ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡})) |
36 | 29, 35 | sylibr 223 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 ∪ 𝐹)
∧ (𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑢)) → ∀𝑣 ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} (𝑢 ∩ 𝑣) ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡}) |
37 | 36 | rexlimdvaa 3014 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢 ∈ 𝒫 ∪ 𝐹)
→ (∃𝑦 ∈
𝐹 𝑦 ⊆ 𝑢 → ∀𝑣 ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} (𝑢 ∩ 𝑣) ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡})) |
38 | 37 | ralrimiva 2949 |
. . . . . . . 8
⊢ (𝐹 ∈ (fBas‘𝑋) → ∀𝑢 ∈ 𝒫 ∪ 𝐹(∃𝑦 ∈ 𝐹 𝑦 ⊆ 𝑢 → ∀𝑣 ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} (𝑢 ∩ 𝑣) ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡})) |
39 | | sseq2 3590 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑢 → (𝑥 ⊆ 𝑡 ↔ 𝑥 ⊆ 𝑢)) |
40 | 39 | rexbidv 3034 |
. . . . . . . . . 10
⊢ (𝑡 = 𝑢 → (∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 ↔ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑢)) |
41 | | sseq1 3589 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝑥 ⊆ 𝑢 ↔ 𝑦 ⊆ 𝑢)) |
42 | 41 | cbvrexv 3148 |
. . . . . . . . . 10
⊢
(∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑢 ↔ ∃𝑦 ∈ 𝐹 𝑦 ⊆ 𝑢) |
43 | 40, 42 | syl6bb 275 |
. . . . . . . . 9
⊢ (𝑡 = 𝑢 → (∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 ↔ ∃𝑦 ∈ 𝐹 𝑦 ⊆ 𝑢)) |
44 | 43 | ralrab 3335 |
. . . . . . . 8
⊢
(∀𝑢 ∈
{𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡}∀𝑣 ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} (𝑢 ∩ 𝑣) ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} ↔ ∀𝑢 ∈ 𝒫 ∪ 𝐹(∃𝑦 ∈ 𝐹 𝑦 ⊆ 𝑢 → ∀𝑣 ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} (𝑢 ∩ 𝑣) ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡})) |
45 | 38, 44 | sylibr 223 |
. . . . . . 7
⊢ (𝐹 ∈ (fBas‘𝑋) → ∀𝑢 ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡}∀𝑣 ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} (𝑢 ∩ 𝑣) ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡}) |
46 | | pwuni 4825 |
. . . . . . . 8
⊢ 𝐹 ⊆ 𝒫 ∪ 𝐹 |
47 | | ssid 3587 |
. . . . . . . . . 10
⊢ 𝑡 ⊆ 𝑡 |
48 | | sseq1 3589 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑡 → (𝑥 ⊆ 𝑡 ↔ 𝑡 ⊆ 𝑡)) |
49 | 48 | rspcev 3282 |
. . . . . . . . . 10
⊢ ((𝑡 ∈ 𝐹 ∧ 𝑡 ⊆ 𝑡) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡) |
50 | 47, 49 | mpan2 703 |
. . . . . . . . 9
⊢ (𝑡 ∈ 𝐹 → ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡) |
51 | 50 | rgen 2906 |
. . . . . . . 8
⊢
∀𝑡 ∈
𝐹 ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 |
52 | | ssrab 3643 |
. . . . . . . 8
⊢ (𝐹 ⊆ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} ↔ (𝐹 ⊆ 𝒫 ∪ 𝐹
∧ ∀𝑡 ∈
𝐹 ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡)) |
53 | 46, 51, 52 | mpbir2an 957 |
. . . . . . 7
⊢ 𝐹 ⊆ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} |
54 | 45, 53 | jctil 558 |
. . . . . 6
⊢ (𝐹 ∈ (fBas‘𝑋) → (𝐹 ⊆ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} ∧ ∀𝑢 ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡}∀𝑣 ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} (𝑢 ∩ 𝑣) ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡})) |
55 | | uniexg 6853 |
. . . . . . 7
⊢ (𝐹 ∈ (fBas‘𝑋) → ∪ 𝐹
∈ V) |
56 | | pwexg 4776 |
. . . . . . 7
⊢ (∪ 𝐹
∈ V → 𝒫 ∪ 𝐹 ∈ V) |
57 | | rabexg 4739 |
. . . . . . 7
⊢
(𝒫 ∪ 𝐹 ∈ V → {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} ∈ V) |
58 | | sseq2 3590 |
. . . . . . . . 9
⊢ (𝑧 = {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} → (𝐹 ⊆ 𝑧 ↔ 𝐹 ⊆ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡})) |
59 | | eleq2 2677 |
. . . . . . . . . . 11
⊢ (𝑧 = {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} → ((𝑢 ∩ 𝑣) ∈ 𝑧 ↔ (𝑢 ∩ 𝑣) ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡})) |
60 | 59 | raleqbi1dv 3123 |
. . . . . . . . . 10
⊢ (𝑧 = {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} → (∀𝑣 ∈ 𝑧 (𝑢 ∩ 𝑣) ∈ 𝑧 ↔ ∀𝑣 ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} (𝑢 ∩ 𝑣) ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡})) |
61 | 60 | raleqbi1dv 3123 |
. . . . . . . . 9
⊢ (𝑧 = {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} → (∀𝑢 ∈ 𝑧 ∀𝑣 ∈ 𝑧 (𝑢 ∩ 𝑣) ∈ 𝑧 ↔ ∀𝑢 ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡}∀𝑣 ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} (𝑢 ∩ 𝑣) ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡})) |
62 | 58, 61 | anbi12d 743 |
. . . . . . . 8
⊢ (𝑧 = {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} → ((𝐹 ⊆ 𝑧 ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ 𝑧 (𝑢 ∩ 𝑣) ∈ 𝑧) ↔ (𝐹 ⊆ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} ∧ ∀𝑢 ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡}∀𝑣 ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} (𝑢 ∩ 𝑣) ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡}))) |
63 | 62 | elabg 3320 |
. . . . . . 7
⊢ ({𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} ∈ V → ({𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} ∈ {𝑧 ∣ (𝐹 ⊆ 𝑧 ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ 𝑧 (𝑢 ∩ 𝑣) ∈ 𝑧)} ↔ (𝐹 ⊆ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} ∧ ∀𝑢 ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡}∀𝑣 ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} (𝑢 ∩ 𝑣) ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡}))) |
64 | 55, 56, 57, 63 | 4syl 19 |
. . . . . 6
⊢ (𝐹 ∈ (fBas‘𝑋) → ({𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} ∈ {𝑧 ∣ (𝐹 ⊆ 𝑧 ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ 𝑧 (𝑢 ∩ 𝑣) ∈ 𝑧)} ↔ (𝐹 ⊆ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} ∧ ∀𝑢 ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡}∀𝑣 ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} (𝑢 ∩ 𝑣) ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡}))) |
65 | 54, 64 | mpbird 246 |
. . . . 5
⊢ (𝐹 ∈ (fBas‘𝑋) → {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} ∈ {𝑧 ∣ (𝐹 ⊆ 𝑧 ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ 𝑧 (𝑢 ∩ 𝑣) ∈ 𝑧)}) |
66 | | intss1 4427 |
. . . . 5
⊢ ({𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} ∈ {𝑧 ∣ (𝐹 ⊆ 𝑧 ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ 𝑧 (𝑢 ∩ 𝑣) ∈ 𝑧)} → ∩ {𝑧 ∣ (𝐹 ⊆ 𝑧 ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ 𝑧 (𝑢 ∩ 𝑣) ∈ 𝑧)} ⊆ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡}) |
67 | 65, 66 | syl 17 |
. . . 4
⊢ (𝐹 ∈ (fBas‘𝑋) → ∩ {𝑧
∣ (𝐹 ⊆ 𝑧 ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ 𝑧 (𝑢 ∩ 𝑣) ∈ 𝑧)} ⊆ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡}) |
68 | 1, 67 | eqsstrd 3602 |
. . 3
⊢ (𝐹 ∈ (fBas‘𝑋) → (fi‘𝐹) ⊆ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡}) |
69 | 68 | sselda 3568 |
. 2
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ (fi‘𝐹)) → 𝐴 ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡}) |
70 | | sseq2 3590 |
. . . . 5
⊢ (𝑡 = 𝐴 → (𝑥 ⊆ 𝑡 ↔ 𝑥 ⊆ 𝐴)) |
71 | 70 | rexbidv 3034 |
. . . 4
⊢ (𝑡 = 𝐴 → (∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 ↔ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴)) |
72 | 71 | elrab 3331 |
. . 3
⊢ (𝐴 ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} ↔ (𝐴 ∈ 𝒫 ∪ 𝐹
∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴)) |
73 | 72 | simprbi 479 |
. 2
⊢ (𝐴 ∈ {𝑡 ∈ 𝒫 ∪ 𝐹
∣ ∃𝑥 ∈
𝐹 𝑥 ⊆ 𝑡} → ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴) |
74 | 69, 73 | syl 17 |
1
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ (fi‘𝐹)) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴) |