MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcxp1 Structured version   Visualization version   GIF version

Theorem dvcxp1 24281
Description: The derivative of a complex power with respect to the first argument. (Contributed by Mario Carneiro, 24-Feb-2015.)
Assertion
Ref Expression
dvcxp1 (𝐴 ∈ ℂ → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥𝑐𝐴))) = (𝑥 ∈ ℝ+ ↦ (𝐴 · (𝑥𝑐(𝐴 − 1)))))
Distinct variable group:   𝑥,𝐴

Proof of Theorem dvcxp1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 reelprrecn 9907 . . . 4 ℝ ∈ {ℝ, ℂ}
21a1i 11 . . 3 (𝐴 ∈ ℂ → ℝ ∈ {ℝ, ℂ})
3 relogcl 24126 . . . 4 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
43adantl 481 . . 3 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
5 rpreccl 11733 . . . 4 (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ+)
65adantl 481 . . 3 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ+)
7 recn 9905 . . . 4 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
8 mulcl 9899 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐴 · 𝑦) ∈ ℂ)
9 efcl 14652 . . . . 5 ((𝐴 · 𝑦) ∈ ℂ → (exp‘(𝐴 · 𝑦)) ∈ ℂ)
108, 9syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (exp‘(𝐴 · 𝑦)) ∈ ℂ)
117, 10sylan2 490 . . 3 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℝ) → (exp‘(𝐴 · 𝑦)) ∈ ℂ)
12 ovex 6577 . . . 4 ((exp‘(𝐴 · 𝑦)) · 𝐴) ∈ V
1312a1i 11 . . 3 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℝ) → ((exp‘(𝐴 · 𝑦)) · 𝐴) ∈ V)
14 dvrelog 24183 . . . 4 (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))
15 relogf1o 24117 . . . . . . . 8 (log ↾ ℝ+):ℝ+1-1-onto→ℝ
16 f1of 6050 . . . . . . . 8 ((log ↾ ℝ+):ℝ+1-1-onto→ℝ → (log ↾ ℝ+):ℝ+⟶ℝ)
1715, 16mp1i 13 . . . . . . 7 (𝐴 ∈ ℂ → (log ↾ ℝ+):ℝ+⟶ℝ)
1817feqmptd 6159 . . . . . 6 (𝐴 ∈ ℂ → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥)))
19 fvres 6117 . . . . . . 7 (𝑥 ∈ ℝ+ → ((log ↾ ℝ+)‘𝑥) = (log‘𝑥))
2019mpteq2ia 4668 . . . . . 6 (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥)) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))
2118, 20syl6eq 2660 . . . . 5 (𝐴 ∈ ℂ → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))
2221oveq2d 6565 . . . 4 (𝐴 ∈ ℂ → (ℝ D (log ↾ ℝ+)) = (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))))
2314, 22syl5reqr 2659 . . 3 (𝐴 ∈ ℂ → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)))
24 eqid 2610 . . . 4 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2524cnfldtopon 22396 . . . . 5 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
26 toponmax 20543 . . . . 5 ((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) → ℂ ∈ (TopOpen‘ℂfld))
2725, 26mp1i 13 . . . 4 (𝐴 ∈ ℂ → ℂ ∈ (TopOpen‘ℂfld))
28 ax-resscn 9872 . . . . . 6 ℝ ⊆ ℂ
2928a1i 11 . . . . 5 (𝐴 ∈ ℂ → ℝ ⊆ ℂ)
30 df-ss 3554 . . . . 5 (ℝ ⊆ ℂ ↔ (ℝ ∩ ℂ) = ℝ)
3129, 30sylib 207 . . . 4 (𝐴 ∈ ℂ → (ℝ ∩ ℂ) = ℝ)
3212a1i 11 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((exp‘(𝐴 · 𝑦)) · 𝐴) ∈ V)
33 cnelprrecn 9908 . . . . . 6 ℂ ∈ {ℝ, ℂ}
3433a1i 11 . . . . 5 (𝐴 ∈ ℂ → ℂ ∈ {ℝ, ℂ})
35 simpl 472 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝐴 ∈ ℂ)
36 efcl 14652 . . . . . 6 (𝑥 ∈ ℂ → (exp‘𝑥) ∈ ℂ)
3736adantl 481 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (exp‘𝑥) ∈ ℂ)
38 simpr 476 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
39 1cnd 9935 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 1 ∈ ℂ)
4034dvmptid 23526 . . . . . . 7 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) = (𝑦 ∈ ℂ ↦ 1))
41 id 22 . . . . . . 7 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
4234, 38, 39, 40, 41dvmptcmul 23533 . . . . . 6 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (𝑦 ∈ ℂ ↦ (𝐴 · 1)))
43 mulid1 9916 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴)
4443mpteq2dv 4673 . . . . . 6 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (𝐴 · 1)) = (𝑦 ∈ ℂ ↦ 𝐴))
4542, 44eqtrd 2644 . . . . 5 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (𝑦 ∈ ℂ ↦ 𝐴))
46 dvef 23547 . . . . . 6 (ℂ D exp) = exp
47 eff 14651 . . . . . . . . . 10 exp:ℂ⟶ℂ
4847a1i 11 . . . . . . . . 9 (𝐴 ∈ ℂ → exp:ℂ⟶ℂ)
4948feqmptd 6159 . . . . . . . 8 (𝐴 ∈ ℂ → exp = (𝑥 ∈ ℂ ↦ (exp‘𝑥)))
5049eqcomd 2616 . . . . . . 7 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ (exp‘𝑥)) = exp)
5150oveq2d 6565 . . . . . 6 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ ℂ ↦ (exp‘𝑥))) = (ℂ D exp))
5246, 51, 503eqtr4a 2670 . . . . 5 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ ℂ ↦ (exp‘𝑥))) = (𝑥 ∈ ℂ ↦ (exp‘𝑥)))
53 fveq2 6103 . . . . 5 (𝑥 = (𝐴 · 𝑦) → (exp‘𝑥) = (exp‘(𝐴 · 𝑦)))
5434, 34, 8, 35, 37, 37, 45, 52, 53, 53dvmptco 23541 . . . 4 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℂ ↦ ((exp‘(𝐴 · 𝑦)) · 𝐴)))
5524, 2, 27, 31, 10, 32, 54dvmptres3 23525 . . 3 (𝐴 ∈ ℂ → (ℝ D (𝑦 ∈ ℝ ↦ (exp‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℝ ↦ ((exp‘(𝐴 · 𝑦)) · 𝐴)))
56 oveq2 6557 . . . 4 (𝑦 = (log‘𝑥) → (𝐴 · 𝑦) = (𝐴 · (log‘𝑥)))
5756fveq2d 6107 . . 3 (𝑦 = (log‘𝑥) → (exp‘(𝐴 · 𝑦)) = (exp‘(𝐴 · (log‘𝑥))))
5857oveq1d 6564 . . 3 (𝑦 = (log‘𝑥) → ((exp‘(𝐴 · 𝑦)) · 𝐴) = ((exp‘(𝐴 · (log‘𝑥))) · 𝐴))
592, 2, 4, 6, 11, 13, 23, 55, 57, 58dvmptco 23541 . 2 (𝐴 ∈ ℂ → (ℝ D (𝑥 ∈ ℝ+ ↦ (exp‘(𝐴 · (log‘𝑥))))) = (𝑥 ∈ ℝ+ ↦ (((exp‘(𝐴 · (log‘𝑥))) · 𝐴) · (1 / 𝑥))))
60 rpcn 11717 . . . . . 6 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
6160adantl 481 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
62 rpne0 11724 . . . . . 6 (𝑥 ∈ ℝ+𝑥 ≠ 0)
6362adantl 481 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → 𝑥 ≠ 0)
64 simpl 472 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ ℂ)
6561, 63, 64cxpefd 24258 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (𝑥𝑐𝐴) = (exp‘(𝐴 · (log‘𝑥))))
6665mpteq2dva 4672 . . 3 (𝐴 ∈ ℂ → (𝑥 ∈ ℝ+ ↦ (𝑥𝑐𝐴)) = (𝑥 ∈ ℝ+ ↦ (exp‘(𝐴 · (log‘𝑥)))))
6766oveq2d 6565 . 2 (𝐴 ∈ ℂ → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥𝑐𝐴))) = (ℝ D (𝑥 ∈ ℝ+ ↦ (exp‘(𝐴 · (log‘𝑥))))))
68 1cnd 9935 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → 1 ∈ ℂ)
6961, 63, 64, 68cxpsubd 24264 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (𝑥𝑐(𝐴 − 1)) = ((𝑥𝑐𝐴) / (𝑥𝑐1)))
7061cxp1d 24252 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (𝑥𝑐1) = 𝑥)
7170oveq2d 6565 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ((𝑥𝑐𝐴) / (𝑥𝑐1)) = ((𝑥𝑐𝐴) / 𝑥))
7261, 64cxpcld 24254 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (𝑥𝑐𝐴) ∈ ℂ)
7372, 61, 63divrecd 10683 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ((𝑥𝑐𝐴) / 𝑥) = ((𝑥𝑐𝐴) · (1 / 𝑥)))
7469, 71, 733eqtrd 2648 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (𝑥𝑐(𝐴 − 1)) = ((𝑥𝑐𝐴) · (1 / 𝑥)))
7574oveq2d 6565 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (𝐴 · (𝑥𝑐(𝐴 − 1))) = (𝐴 · ((𝑥𝑐𝐴) · (1 / 𝑥))))
766rpcnd 11750 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℂ)
7764, 72, 76mul12d 10124 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (𝐴 · ((𝑥𝑐𝐴) · (1 / 𝑥))) = ((𝑥𝑐𝐴) · (𝐴 · (1 / 𝑥))))
7872, 64, 76mulassd 9942 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (((𝑥𝑐𝐴) · 𝐴) · (1 / 𝑥)) = ((𝑥𝑐𝐴) · (𝐴 · (1 / 𝑥))))
7977, 78eqtr4d 2647 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (𝐴 · ((𝑥𝑐𝐴) · (1 / 𝑥))) = (((𝑥𝑐𝐴) · 𝐴) · (1 / 𝑥)))
8065oveq1d 6564 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ((𝑥𝑐𝐴) · 𝐴) = ((exp‘(𝐴 · (log‘𝑥))) · 𝐴))
8180oveq1d 6564 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (((𝑥𝑐𝐴) · 𝐴) · (1 / 𝑥)) = (((exp‘(𝐴 · (log‘𝑥))) · 𝐴) · (1 / 𝑥)))
8275, 79, 813eqtrd 2648 . . 3 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (𝐴 · (𝑥𝑐(𝐴 − 1))) = (((exp‘(𝐴 · (log‘𝑥))) · 𝐴) · (1 / 𝑥)))
8382mpteq2dva 4672 . 2 (𝐴 ∈ ℂ → (𝑥 ∈ ℝ+ ↦ (𝐴 · (𝑥𝑐(𝐴 − 1)))) = (𝑥 ∈ ℝ+ ↦ (((exp‘(𝐴 · (log‘𝑥))) · 𝐴) · (1 / 𝑥))))
8459, 67, 833eqtr4d 2654 1 (𝐴 ∈ ℂ → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥𝑐𝐴))) = (𝑥 ∈ ℝ+ ↦ (𝐴 · (𝑥𝑐(𝐴 − 1)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  Vcvv 3173  cin 3539  wss 3540  {cpr 4127  cmpt 4643  cres 5040  wf 5800  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   · cmul 9820  cmin 10145   / cdiv 10563  +crp 11708  expce 14631  TopOpenctopn 15905  fldccnfld 19567  TopOnctopon 20518   D cdv 23433  logclog 24105  𝑐ccxp 24106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-cxp 24108
This theorem is referenced by:  dvsqrt  24283
  Copyright terms: Public domain W3C validator