Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dochval2 | Structured version Visualization version GIF version |
Description: Subspace orthocomplement for DVecH vector space. (Contributed by NM, 14-Apr-2014.) |
Ref | Expression |
---|---|
dochval2.o | ⊢ ⊥ = (oc‘𝐾) |
dochval2.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dochval2.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
dochval2.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dochval2.v | ⊢ 𝑉 = (Base‘𝑈) |
dochval2.n | ⊢ 𝑁 = ((ocH‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dochval2 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → (𝑁‘𝑋) = (𝐼‘( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2610 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | eqid 2610 | . . 3 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
3 | dochval2.o | . . 3 ⊢ ⊥ = (oc‘𝐾) | |
4 | dochval2.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | dochval2.i | . . 3 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
6 | dochval2.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
7 | dochval2.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
8 | dochval2.n | . . 3 ⊢ 𝑁 = ((ocH‘𝐾)‘𝑊) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | dochval 35658 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → (𝑁‘𝑋) = (𝐼‘( ⊥ ‘((glb‘𝐾)‘{𝑥 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑥)})))) |
10 | hlclat 33663 | . . . . . . . 8 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) | |
11 | 10 | ad2antrr 758 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → 𝐾 ∈ CLat) |
12 | ssrab2 3650 | . . . . . . 7 ⊢ {𝑥 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑥)} ⊆ (Base‘𝐾) | |
13 | 1, 2 | clatglbcl 16937 | . . . . . . 7 ⊢ ((𝐾 ∈ CLat ∧ {𝑥 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑥)} ⊆ (Base‘𝐾)) → ((glb‘𝐾)‘{𝑥 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑥)}) ∈ (Base‘𝐾)) |
14 | 11, 12, 13 | sylancl 693 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → ((glb‘𝐾)‘{𝑥 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑥)}) ∈ (Base‘𝐾)) |
15 | 1, 4, 5 | dihcnvid1 35579 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((glb‘𝐾)‘{𝑥 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑥)}) ∈ (Base‘𝐾)) → (◡𝐼‘(𝐼‘((glb‘𝐾)‘{𝑥 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑥)}))) = ((glb‘𝐾)‘{𝑥 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑥)})) |
16 | 14, 15 | syldan 486 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → (◡𝐼‘(𝐼‘((glb‘𝐾)‘{𝑥 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑥)}))) = ((glb‘𝐾)‘{𝑥 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑥)})) |
17 | 1, 2, 4, 5, 6, 7 | dihglb2 35649 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → (𝐼‘((glb‘𝐾)‘{𝑥 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑥)})) = ∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}) |
18 | 17 | fveq2d 6107 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → (◡𝐼‘(𝐼‘((glb‘𝐾)‘{𝑥 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑥)}))) = (◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})) |
19 | 16, 18 | eqtr3d 2646 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → ((glb‘𝐾)‘{𝑥 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑥)}) = (◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})) |
20 | 19 | fveq2d 6107 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → ( ⊥ ‘((glb‘𝐾)‘{𝑥 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑥)})) = ( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}))) |
21 | 20 | fveq2d 6107 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → (𝐼‘( ⊥ ‘((glb‘𝐾)‘{𝑥 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑥)}))) = (𝐼‘( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})))) |
22 | 9, 21 | eqtrd 2644 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → (𝑁‘𝑋) = (𝐼‘( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 {crab 2900 ⊆ wss 3540 ∩ cint 4410 ◡ccnv 5037 ran crn 5039 ‘cfv 5804 Basecbs 15695 occoc 15776 glbcglb 16766 CLatccla 16930 HLchlt 33655 LHypclh 34288 DVecHcdvh 35385 DIsoHcdih 35535 ocHcoch 35654 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-riotaBAD 33257 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-fal 1481 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-iin 4458 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-tpos 7239 df-undef 7286 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-map 7746 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-5 10959 df-6 10960 df-n0 11170 df-z 11255 df-uz 11564 df-fz 12198 df-struct 15697 df-ndx 15698 df-slot 15699 df-base 15700 df-sets 15701 df-ress 15702 df-plusg 15781 df-mulr 15782 df-sca 15784 df-vsca 15785 df-0g 15925 df-preset 16751 df-poset 16769 df-plt 16781 df-lub 16797 df-glb 16798 df-join 16799 df-meet 16800 df-p0 16862 df-p1 16863 df-lat 16869 df-clat 16931 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-submnd 17159 df-grp 17248 df-minusg 17249 df-sbg 17250 df-subg 17414 df-cntz 17573 df-lsm 17874 df-cmn 18018 df-abl 18019 df-mgp 18313 df-ur 18325 df-ring 18372 df-oppr 18446 df-dvdsr 18464 df-unit 18465 df-invr 18495 df-dvr 18506 df-drng 18572 df-lmod 18688 df-lss 18754 df-lsp 18793 df-lvec 18924 df-lsatoms 33281 df-oposet 33481 df-ol 33483 df-oml 33484 df-covers 33571 df-ats 33572 df-atl 33603 df-cvlat 33627 df-hlat 33656 df-llines 33802 df-lplanes 33803 df-lvols 33804 df-lines 33805 df-psubsp 33807 df-pmap 33808 df-padd 34100 df-lhyp 34292 df-laut 34293 df-ldil 34408 df-ltrn 34409 df-trl 34464 df-tendo 35061 df-edring 35063 df-disoa 35336 df-dvech 35386 df-dib 35446 df-dic 35480 df-dih 35536 df-doch 35655 |
This theorem is referenced by: doch2val2 35671 dochocss 35673 |
Copyright terms: Public domain | W3C validator |