Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dochval Structured version   Visualization version   GIF version

Theorem dochval 35658
Description: Subspace orthocomplement for DVecH vector space. (Contributed by NM, 14-Mar-2014.)
Hypotheses
Ref Expression
dochval.b 𝐵 = (Base‘𝐾)
dochval.g 𝐺 = (glb‘𝐾)
dochval.o = (oc‘𝐾)
dochval.h 𝐻 = (LHyp‘𝐾)
dochval.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dochval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dochval.v 𝑉 = (Base‘𝑈)
dochval.n 𝑁 = ((ocH‘𝐾)‘𝑊)
Assertion
Ref Expression
dochval (((𝐾𝑌𝑊𝐻) ∧ 𝑋𝑉) → (𝑁𝑋) = (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑋 ⊆ (𝐼𝑦)}))))
Distinct variable groups:   𝑦,𝐵   𝑦,𝐾   𝑦,𝑊   𝑦,𝑋
Allowed substitution hints:   𝑈(𝑦)   𝐺(𝑦)   𝐻(𝑦)   𝐼(𝑦)   𝑁(𝑦)   (𝑦)   𝑉(𝑦)   𝑌(𝑦)

Proof of Theorem dochval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dochval.b . . . . 5 𝐵 = (Base‘𝐾)
2 dochval.g . . . . 5 𝐺 = (glb‘𝐾)
3 dochval.o . . . . 5 = (oc‘𝐾)
4 dochval.h . . . . 5 𝐻 = (LHyp‘𝐾)
5 dochval.i . . . . 5 𝐼 = ((DIsoH‘𝐾)‘𝑊)
6 dochval.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
7 dochval.v . . . . 5 𝑉 = (Base‘𝑈)
8 dochval.n . . . . 5 𝑁 = ((ocH‘𝐾)‘𝑊)
91, 2, 3, 4, 5, 6, 7, 8dochfval 35657 . . . 4 ((𝐾𝑌𝑊𝐻) → 𝑁 = (𝑥 ∈ 𝒫 𝑉 ↦ (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (𝐼𝑦)})))))
109adantr 480 . . 3 (((𝐾𝑌𝑊𝐻) ∧ 𝑋𝑉) → 𝑁 = (𝑥 ∈ 𝒫 𝑉 ↦ (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (𝐼𝑦)})))))
1110fveq1d 6105 . 2 (((𝐾𝑌𝑊𝐻) ∧ 𝑋𝑉) → (𝑁𝑋) = ((𝑥 ∈ 𝒫 𝑉 ↦ (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (𝐼𝑦)}))))‘𝑋))
12 fvex 6113 . . . . . . 7 (Base‘𝑈) ∈ V
137, 12eqeltri 2684 . . . . . 6 𝑉 ∈ V
1413elpw2 4755 . . . . 5 (𝑋 ∈ 𝒫 𝑉𝑋𝑉)
1514biimpri 217 . . . 4 (𝑋𝑉𝑋 ∈ 𝒫 𝑉)
1615adantl 481 . . 3 (((𝐾𝑌𝑊𝐻) ∧ 𝑋𝑉) → 𝑋 ∈ 𝒫 𝑉)
17 fvex 6113 . . 3 (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑋 ⊆ (𝐼𝑦)}))) ∈ V
18 sseq1 3589 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥 ⊆ (𝐼𝑦) ↔ 𝑋 ⊆ (𝐼𝑦)))
1918rabbidv 3164 . . . . . . 7 (𝑥 = 𝑋 → {𝑦𝐵𝑥 ⊆ (𝐼𝑦)} = {𝑦𝐵𝑋 ⊆ (𝐼𝑦)})
2019fveq2d 6107 . . . . . 6 (𝑥 = 𝑋 → (𝐺‘{𝑦𝐵𝑥 ⊆ (𝐼𝑦)}) = (𝐺‘{𝑦𝐵𝑋 ⊆ (𝐼𝑦)}))
2120fveq2d 6107 . . . . 5 (𝑥 = 𝑋 → ( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (𝐼𝑦)})) = ( ‘(𝐺‘{𝑦𝐵𝑋 ⊆ (𝐼𝑦)})))
2221fveq2d 6107 . . . 4 (𝑥 = 𝑋 → (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (𝐼𝑦)}))) = (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑋 ⊆ (𝐼𝑦)}))))
23 eqid 2610 . . . 4 (𝑥 ∈ 𝒫 𝑉 ↦ (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (𝐼𝑦)})))) = (𝑥 ∈ 𝒫 𝑉 ↦ (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (𝐼𝑦)}))))
2422, 23fvmptg 6189 . . 3 ((𝑋 ∈ 𝒫 𝑉 ∧ (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑋 ⊆ (𝐼𝑦)}))) ∈ V) → ((𝑥 ∈ 𝒫 𝑉 ↦ (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (𝐼𝑦)}))))‘𝑋) = (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑋 ⊆ (𝐼𝑦)}))))
2516, 17, 24sylancl 693 . 2 (((𝐾𝑌𝑊𝐻) ∧ 𝑋𝑉) → ((𝑥 ∈ 𝒫 𝑉 ↦ (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (𝐼𝑦)}))))‘𝑋) = (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑋 ⊆ (𝐼𝑦)}))))
2611, 25eqtrd 2644 1 (((𝐾𝑌𝑊𝐻) ∧ 𝑋𝑉) → (𝑁𝑋) = (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑋 ⊆ (𝐼𝑦)}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  {crab 2900  Vcvv 3173  wss 3540  𝒫 cpw 4108  cmpt 4643  cfv 5804  Basecbs 15695  occoc 15776  glbcglb 16766  LHypclh 34288  DVecHcdvh 35385  DIsoHcdih 35535  ocHcoch 35654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-doch 35655
This theorem is referenced by:  dochval2  35659  dochcl  35660  dochvalr  35664  dochss  35672
  Copyright terms: Public domain W3C validator