MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrmul Structured version   Visualization version   GIF version

Theorem dgrmul 23830
Description: The degree of a product of nonzero polynomials is the sum of degrees. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
dgradd.1 𝑀 = (deg‘𝐹)
dgradd.2 𝑁 = (deg‘𝐺)
Assertion
Ref Expression
dgrmul (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (deg‘(𝐹𝑓 · 𝐺)) = (𝑀 + 𝑁))

Proof of Theorem dgrmul
StepHypRef Expression
1 dgradd.1 . . . 4 𝑀 = (deg‘𝐹)
2 dgradd.2 . . . 4 𝑁 = (deg‘𝐺)
31, 2dgrmul2 23829 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹𝑓 · 𝐺)) ≤ (𝑀 + 𝑁))
43ad2ant2r 779 . 2 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (deg‘(𝐹𝑓 · 𝐺)) ≤ (𝑀 + 𝑁))
5 plymulcl 23781 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹𝑓 · 𝐺) ∈ (Poly‘ℂ))
65ad2ant2r 779 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (𝐹𝑓 · 𝐺) ∈ (Poly‘ℂ))
7 dgrcl 23793 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
81, 7syl5eqel 2692 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → 𝑀 ∈ ℕ0)
98ad2antrr 758 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → 𝑀 ∈ ℕ0)
10 dgrcl 23793 . . . . . 6 (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) ∈ ℕ0)
112, 10syl5eqel 2692 . . . . 5 (𝐺 ∈ (Poly‘𝑆) → 𝑁 ∈ ℕ0)
1211ad2antrl 760 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → 𝑁 ∈ ℕ0)
139, 12nn0addcld 11232 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (𝑀 + 𝑁) ∈ ℕ0)
14 eqid 2610 . . . . . 6 (coeff‘𝐹) = (coeff‘𝐹)
15 eqid 2610 . . . . . 6 (coeff‘𝐺) = (coeff‘𝐺)
1614, 15, 1, 2coemulhi 23814 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘(𝐹𝑓 · 𝐺))‘(𝑀 + 𝑁)) = (((coeff‘𝐹)‘𝑀) · ((coeff‘𝐺)‘𝑁)))
1716ad2ant2r 779 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → ((coeff‘(𝐹𝑓 · 𝐺))‘(𝑀 + 𝑁)) = (((coeff‘𝐹)‘𝑀) · ((coeff‘𝐺)‘𝑁)))
1814coef3 23792 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶ℂ)
1918ad2antrr 758 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (coeff‘𝐹):ℕ0⟶ℂ)
2019, 9ffvelrnd 6268 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → ((coeff‘𝐹)‘𝑀) ∈ ℂ)
2115coef3 23792 . . . . . . 7 (𝐺 ∈ (Poly‘𝑆) → (coeff‘𝐺):ℕ0⟶ℂ)
2221ad2antrl 760 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (coeff‘𝐺):ℕ0⟶ℂ)
2322, 12ffvelrnd 6268 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → ((coeff‘𝐺)‘𝑁) ∈ ℂ)
241, 14dgreq0 23825 . . . . . . . 8 (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ ((coeff‘𝐹)‘𝑀) = 0))
2524necon3bid 2826 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → (𝐹 ≠ 0𝑝 ↔ ((coeff‘𝐹)‘𝑀) ≠ 0))
2625biimpa 500 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) → ((coeff‘𝐹)‘𝑀) ≠ 0)
2726adantr 480 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → ((coeff‘𝐹)‘𝑀) ≠ 0)
282, 15dgreq0 23825 . . . . . . . 8 (𝐺 ∈ (Poly‘𝑆) → (𝐺 = 0𝑝 ↔ ((coeff‘𝐺)‘𝑁) = 0))
2928necon3bid 2826 . . . . . . 7 (𝐺 ∈ (Poly‘𝑆) → (𝐺 ≠ 0𝑝 ↔ ((coeff‘𝐺)‘𝑁) ≠ 0))
3029biimpa 500 . . . . . 6 ((𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((coeff‘𝐺)‘𝑁) ≠ 0)
3130adantl 481 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → ((coeff‘𝐺)‘𝑁) ≠ 0)
3220, 23, 27, 31mulne0d 10558 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (((coeff‘𝐹)‘𝑀) · ((coeff‘𝐺)‘𝑁)) ≠ 0)
3317, 32eqnetrd 2849 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → ((coeff‘(𝐹𝑓 · 𝐺))‘(𝑀 + 𝑁)) ≠ 0)
34 eqid 2610 . . . 4 (coeff‘(𝐹𝑓 · 𝐺)) = (coeff‘(𝐹𝑓 · 𝐺))
35 eqid 2610 . . . 4 (deg‘(𝐹𝑓 · 𝐺)) = (deg‘(𝐹𝑓 · 𝐺))
3634, 35dgrub 23794 . . 3 (((𝐹𝑓 · 𝐺) ∈ (Poly‘ℂ) ∧ (𝑀 + 𝑁) ∈ ℕ0 ∧ ((coeff‘(𝐹𝑓 · 𝐺))‘(𝑀 + 𝑁)) ≠ 0) → (𝑀 + 𝑁) ≤ (deg‘(𝐹𝑓 · 𝐺)))
376, 13, 33, 36syl3anc 1318 . 2 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (𝑀 + 𝑁) ≤ (deg‘(𝐹𝑓 · 𝐺)))
38 dgrcl 23793 . . . . 5 ((𝐹𝑓 · 𝐺) ∈ (Poly‘ℂ) → (deg‘(𝐹𝑓 · 𝐺)) ∈ ℕ0)
396, 38syl 17 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (deg‘(𝐹𝑓 · 𝐺)) ∈ ℕ0)
4039nn0red 11229 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (deg‘(𝐹𝑓 · 𝐺)) ∈ ℝ)
4113nn0red 11229 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (𝑀 + 𝑁) ∈ ℝ)
4240, 41letri3d 10058 . 2 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → ((deg‘(𝐹𝑓 · 𝐺)) = (𝑀 + 𝑁) ↔ ((deg‘(𝐹𝑓 · 𝐺)) ≤ (𝑀 + 𝑁) ∧ (𝑀 + 𝑁) ≤ (deg‘(𝐹𝑓 · 𝐺)))))
434, 37, 42mpbir2and 959 1 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (deg‘(𝐹𝑓 · 𝐺)) = (𝑀 + 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  wf 5800  cfv 5804  (class class class)co 6549  𝑓 cof 6793  cc 9813  0cc0 9815   + caddc 9818   · cmul 9820  cle 9954  0cn0 11169  0𝑝c0p 23242  Polycply 23744  coeffccoe 23746  degcdgr 23747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-0p 23243  df-ply 23748  df-coe 23750  df-dgr 23751
This theorem is referenced by:  dgrmulc  23831  dgrcolem1  23833  plydivlem4  23855  plydiveu  23857  fta1lem  23866  quotcan  23868  vieta1lem1  23869  vieta1lem2  23870
  Copyright terms: Public domain W3C validator