Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > chfacfpmmulcl | Structured version Visualization version GIF version |
Description: Closure of the value of the "characteristic factor function" multiplied with a constant polynomial matrix. (Contributed by AV, 23-Nov-2019.) |
Ref | Expression |
---|---|
cayhamlem1.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
cayhamlem1.b | ⊢ 𝐵 = (Base‘𝐴) |
cayhamlem1.p | ⊢ 𝑃 = (Poly1‘𝑅) |
cayhamlem1.y | ⊢ 𝑌 = (𝑁 Mat 𝑃) |
cayhamlem1.r | ⊢ × = (.r‘𝑌) |
cayhamlem1.s | ⊢ − = (-g‘𝑌) |
cayhamlem1.0 | ⊢ 0 = (0g‘𝑌) |
cayhamlem1.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
cayhamlem1.g | ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) |
cayhamlem1.e | ⊢ ↑ = (.g‘(mulGrp‘𝑌)) |
Ref | Expression |
---|---|
chfacfpmmulcl | ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → ((𝐾 ↑ (𝑇‘𝑀)) × (𝐺‘𝐾)) ∈ (Base‘𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crngring 18381 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
2 | cayhamlem1.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
3 | cayhamlem1.y | . . . . . 6 ⊢ 𝑌 = (𝑁 Mat 𝑃) | |
4 | 2, 3 | pmatring 20317 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ Ring) |
5 | 1, 4 | sylan2 490 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ Ring) |
6 | 5 | 3adant3 1074 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑌 ∈ Ring) |
7 | 6 | 3ad2ant1 1075 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → 𝑌 ∈ Ring) |
8 | eqid 2610 | . . . . . 6 ⊢ (mulGrp‘𝑌) = (mulGrp‘𝑌) | |
9 | 8 | ringmgp 18376 | . . . . 5 ⊢ (𝑌 ∈ Ring → (mulGrp‘𝑌) ∈ Mnd) |
10 | 6, 9 | syl 17 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (mulGrp‘𝑌) ∈ Mnd) |
11 | 10 | 3ad2ant1 1075 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → (mulGrp‘𝑌) ∈ Mnd) |
12 | simp3 1056 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℕ0) | |
13 | cayhamlem1.t | . . . . . 6 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
14 | cayhamlem1.a | . . . . . 6 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
15 | cayhamlem1.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐴) | |
16 | 13, 14, 15, 2, 3 | mat2pmatbas 20350 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) ∈ (Base‘𝑌)) |
17 | 1, 16 | syl3an2 1352 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) ∈ (Base‘𝑌)) |
18 | 17 | 3ad2ant1 1075 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → (𝑇‘𝑀) ∈ (Base‘𝑌)) |
19 | eqid 2610 | . . . . 5 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
20 | 8, 19 | mgpbas 18318 | . . . 4 ⊢ (Base‘𝑌) = (Base‘(mulGrp‘𝑌)) |
21 | cayhamlem1.e | . . . 4 ⊢ ↑ = (.g‘(mulGrp‘𝑌)) | |
22 | 20, 21 | mulgnn0cl 17381 | . . 3 ⊢ (((mulGrp‘𝑌) ∈ Mnd ∧ 𝐾 ∈ ℕ0 ∧ (𝑇‘𝑀) ∈ (Base‘𝑌)) → (𝐾 ↑ (𝑇‘𝑀)) ∈ (Base‘𝑌)) |
23 | 11, 12, 18, 22 | syl3anc 1318 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → (𝐾 ↑ (𝑇‘𝑀)) ∈ (Base‘𝑌)) |
24 | cayhamlem1.r | . . . . . 6 ⊢ × = (.r‘𝑌) | |
25 | cayhamlem1.s | . . . . . 6 ⊢ − = (-g‘𝑌) | |
26 | cayhamlem1.0 | . . . . . 6 ⊢ 0 = (0g‘𝑌) | |
27 | cayhamlem1.g | . . . . . 6 ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) | |
28 | 14, 15, 2, 3, 24, 25, 26, 13, 27 | chfacfisf 20478 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → 𝐺:ℕ0⟶(Base‘𝑌)) |
29 | 1, 28 | syl3anl2 1367 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → 𝐺:ℕ0⟶(Base‘𝑌)) |
30 | 29 | 3adant3 1074 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → 𝐺:ℕ0⟶(Base‘𝑌)) |
31 | 30, 12 | ffvelrnd 6268 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → (𝐺‘𝐾) ∈ (Base‘𝑌)) |
32 | 19, 24 | ringcl 18384 | . 2 ⊢ ((𝑌 ∈ Ring ∧ (𝐾 ↑ (𝑇‘𝑀)) ∈ (Base‘𝑌) ∧ (𝐺‘𝐾) ∈ (Base‘𝑌)) → ((𝐾 ↑ (𝑇‘𝑀)) × (𝐺‘𝐾)) ∈ (Base‘𝑌)) |
33 | 7, 23, 31, 32 | syl3anc 1318 | 1 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → ((𝐾 ↑ (𝑇‘𝑀)) × (𝐺‘𝐾)) ∈ (Base‘𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ifcif 4036 class class class wbr 4583 ↦ cmpt 4643 ⟶wf 5800 ‘cfv 5804 (class class class)co 6549 ↑𝑚 cmap 7744 Fincfn 7841 0cc0 9815 1c1 9816 + caddc 9818 < clt 9953 − cmin 10145 ℕcn 10897 ℕ0cn0 11169 ...cfz 12197 Basecbs 15695 .rcmulr 15769 0gc0g 15923 Mndcmnd 17117 -gcsg 17247 .gcmg 17363 mulGrpcmgp 18312 Ringcrg 18370 CRingccrg 18371 Poly1cpl1 19368 Mat cmat 20032 matToPolyMat cmat2pmat 20328 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-inf2 8421 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-ot 4134 df-uni 4373 df-int 4411 df-iun 4457 df-iin 4458 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-se 4998 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-isom 5813 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-of 6795 df-ofr 6796 df-om 6958 df-1st 7059 df-2nd 7060 df-supp 7183 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-2o 7448 df-oadd 7451 df-er 7629 df-map 7746 df-pm 7747 df-ixp 7795 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-fsupp 8159 df-sup 8231 df-oi 8298 df-card 8648 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-5 10959 df-6 10960 df-7 10961 df-8 10962 df-9 10963 df-n0 11170 df-z 11255 df-dec 11370 df-uz 11564 df-fz 12198 df-fzo 12335 df-seq 12664 df-hash 12980 df-struct 15697 df-ndx 15698 df-slot 15699 df-base 15700 df-sets 15701 df-ress 15702 df-plusg 15781 df-mulr 15782 df-sca 15784 df-vsca 15785 df-ip 15786 df-tset 15787 df-ple 15788 df-ds 15791 df-hom 15793 df-cco 15794 df-0g 15925 df-gsum 15926 df-prds 15931 df-pws 15933 df-mre 16069 df-mrc 16070 df-acs 16072 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-mhm 17158 df-submnd 17159 df-grp 17248 df-minusg 17249 df-sbg 17250 df-mulg 17364 df-subg 17414 df-ghm 17481 df-cntz 17573 df-cmn 18018 df-abl 18019 df-mgp 18313 df-ur 18325 df-ring 18372 df-cring 18373 df-subrg 18601 df-lmod 18688 df-lss 18754 df-sra 18993 df-rgmod 18994 df-ascl 19135 df-psr 19177 df-mpl 19179 df-opsr 19181 df-psr1 19371 df-ply1 19373 df-dsmm 19895 df-frlm 19910 df-mamu 20009 df-mat 20033 df-mat2pmat 20331 |
This theorem is referenced by: chfacfpmmulgsum 20488 |
Copyright terms: Public domain | W3C validator |