MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axeuclidlem Structured version   Visualization version   GIF version

Theorem axeuclidlem 25642
Description: Lemma for axeuclid 25643. Handle the algebraic aspects of the theorem. (Contributed by Scott Fenton, 9-Sep-2013.)
Assertion
Ref Expression
axeuclidlem ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0) ∧ ∀𝑖 ∈ (1...𝑁)(((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑇𝑖))) = (((1 − 𝑄) · (𝐵𝑖)) + (𝑄 · (𝐶𝑖)))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))))
Distinct variable groups:   𝐴,𝑖,𝑟,𝑠,𝑢,𝑥,𝑦   𝐵,𝑖,𝑟,𝑠,𝑢,𝑥,𝑦   𝐶,𝑖,𝑟,𝑠,𝑢,𝑥,𝑦   𝑖,𝑁,𝑟,𝑠,𝑢,𝑥,𝑦   𝑃,𝑖,𝑟,𝑠,𝑢,𝑥,𝑦   𝑄,𝑖,𝑟,𝑠,𝑢,𝑥,𝑦   𝑇,𝑖,𝑟,𝑠,𝑢,𝑥,𝑦

Proof of Theorem axeuclidlem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 simp21 1087 . . 3 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0) ∧ ∀𝑖 ∈ (1...𝑁)(((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑇𝑖))) = (((1 − 𝑄) · (𝐵𝑖)) + (𝑄 · (𝐶𝑖)))) → 𝑃 ∈ (0[,]1))
2 simp22 1088 . . 3 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0) ∧ ∀𝑖 ∈ (1...𝑁)(((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑇𝑖))) = (((1 − 𝑄) · (𝐵𝑖)) + (𝑄 · (𝐶𝑖)))) → 𝑄 ∈ (0[,]1))
3 fveere 25581 . . . . . . . . . . . . 13 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑘) ∈ ℝ)
43expcom 450 . . . . . . . . . . . 12 (𝑘 ∈ (1...𝑁) → (𝐴 ∈ (𝔼‘𝑁) → (𝐴𝑘) ∈ ℝ))
5 fveere 25581 . . . . . . . . . . . . 13 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑘) ∈ ℝ)
65expcom 450 . . . . . . . . . . . 12 (𝑘 ∈ (1...𝑁) → (𝐵 ∈ (𝔼‘𝑁) → (𝐵𝑘) ∈ ℝ))
74, 6anim12d 584 . . . . . . . . . . 11 (𝑘 ∈ (1...𝑁) → ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ)))
8 fveere 25581 . . . . . . . . . . . . 13 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑘 ∈ (1...𝑁)) → (𝐶𝑘) ∈ ℝ)
98expcom 450 . . . . . . . . . . . 12 (𝑘 ∈ (1...𝑁) → (𝐶 ∈ (𝔼‘𝑁) → (𝐶𝑘) ∈ ℝ))
10 fveere 25581 . . . . . . . . . . . . 13 ((𝑇 ∈ (𝔼‘𝑁) ∧ 𝑘 ∈ (1...𝑁)) → (𝑇𝑘) ∈ ℝ)
1110expcom 450 . . . . . . . . . . . 12 (𝑘 ∈ (1...𝑁) → (𝑇 ∈ (𝔼‘𝑁) → (𝑇𝑘) ∈ ℝ))
129, 11anim12d 584 . . . . . . . . . . 11 (𝑘 ∈ (1...𝑁) → ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁)) → ((𝐶𝑘) ∈ ℝ ∧ (𝑇𝑘) ∈ ℝ)))
137, 12anim12d 584 . . . . . . . . . 10 (𝑘 ∈ (1...𝑁) → (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) → (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) ∧ ((𝐶𝑘) ∈ ℝ ∧ (𝑇𝑘) ∈ ℝ))))
1413impcom 445 . . . . . . . . 9 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ 𝑘 ∈ (1...𝑁)) → (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) ∧ ((𝐶𝑘) ∈ ℝ ∧ (𝑇𝑘) ∈ ℝ)))
15 unitssre 12190 . . . . . . . . . . . . . . . 16 (0[,]1) ⊆ ℝ
1615sseli 3564 . . . . . . . . . . . . . . 15 (𝑃 ∈ (0[,]1) → 𝑃 ∈ ℝ)
17163ad2ant1 1075 . . . . . . . . . . . . . 14 ((𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0) → 𝑃 ∈ ℝ)
1817adantl 481 . . . . . . . . . . . . 13 (((((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) ∧ ((𝐶𝑘) ∈ ℝ ∧ (𝑇𝑘) ∈ ℝ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → 𝑃 ∈ ℝ)
19 peano2rem 10227 . . . . . . . . . . . . 13 (𝑃 ∈ ℝ → (𝑃 − 1) ∈ ℝ)
2018, 19syl 17 . . . . . . . . . . . 12 (((((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) ∧ ((𝐶𝑘) ∈ ℝ ∧ (𝑇𝑘) ∈ ℝ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → (𝑃 − 1) ∈ ℝ)
21 simplll 794 . . . . . . . . . . . 12 (((((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) ∧ ((𝐶𝑘) ∈ ℝ ∧ (𝑇𝑘) ∈ ℝ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → (𝐴𝑘) ∈ ℝ)
2220, 21remulcld 9949 . . . . . . . . . . 11 (((((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) ∧ ((𝐶𝑘) ∈ ℝ ∧ (𝑇𝑘) ∈ ℝ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → ((𝑃 − 1) · (𝐴𝑘)) ∈ ℝ)
23 simpllr 795 . . . . . . . . . . 11 (((((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) ∧ ((𝐶𝑘) ∈ ℝ ∧ (𝑇𝑘) ∈ ℝ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → (𝐵𝑘) ∈ ℝ)
2422, 23readdcld 9948 . . . . . . . . . 10 (((((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) ∧ ((𝐶𝑘) ∈ ℝ ∧ (𝑇𝑘) ∈ ℝ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → (((𝑃 − 1) · (𝐴𝑘)) + (𝐵𝑘)) ∈ ℝ)
25 simpr3 1062 . . . . . . . . . 10 (((((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) ∧ ((𝐶𝑘) ∈ ℝ ∧ (𝑇𝑘) ∈ ℝ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → 𝑃 ≠ 0)
2624, 18, 25redivcld 10732 . . . . . . . . 9 (((((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) ∧ ((𝐶𝑘) ∈ ℝ ∧ (𝑇𝑘) ∈ ℝ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → ((((𝑃 − 1) · (𝐴𝑘)) + (𝐵𝑘)) / 𝑃) ∈ ℝ)
2714, 26sylan 487 . . . . . . . 8 (((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ 𝑘 ∈ (1...𝑁)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → ((((𝑃 − 1) · (𝐴𝑘)) + (𝐵𝑘)) / 𝑃) ∈ ℝ)
2827an32s 842 . . . . . . 7 (((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) ∧ 𝑘 ∈ (1...𝑁)) → ((((𝑃 − 1) · (𝐴𝑘)) + (𝐵𝑘)) / 𝑃) ∈ ℝ)
2928ralrimiva 2949 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → ∀𝑘 ∈ (1...𝑁)((((𝑃 − 1) · (𝐴𝑘)) + (𝐵𝑘)) / 𝑃) ∈ ℝ)
30 eleenn 25576 . . . . . . . 8 (𝐴 ∈ (𝔼‘𝑁) → 𝑁 ∈ ℕ)
3130ad3antrrr 762 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → 𝑁 ∈ ℕ)
32 mptelee 25575 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑘 ∈ (1...𝑁) ↦ ((((𝑃 − 1) · (𝐴𝑘)) + (𝐵𝑘)) / 𝑃)) ∈ (𝔼‘𝑁) ↔ ∀𝑘 ∈ (1...𝑁)((((𝑃 − 1) · (𝐴𝑘)) + (𝐵𝑘)) / 𝑃) ∈ ℝ))
3331, 32syl 17 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → ((𝑘 ∈ (1...𝑁) ↦ ((((𝑃 − 1) · (𝐴𝑘)) + (𝐵𝑘)) / 𝑃)) ∈ (𝔼‘𝑁) ↔ ∀𝑘 ∈ (1...𝑁)((((𝑃 − 1) · (𝐴𝑘)) + (𝐵𝑘)) / 𝑃) ∈ ℝ))
3429, 33mpbird 246 . . . . 5 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → (𝑘 ∈ (1...𝑁) ↦ ((((𝑃 − 1) · (𝐴𝑘)) + (𝐵𝑘)) / 𝑃)) ∈ (𝔼‘𝑁))
35343adant3 1074 . . . 4 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0) ∧ ∀𝑖 ∈ (1...𝑁)(((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑇𝑖))) = (((1 − 𝑄) · (𝐵𝑖)) + (𝑄 · (𝐶𝑖)))) → (𝑘 ∈ (1...𝑁) ↦ ((((𝑃 − 1) · (𝐴𝑘)) + (𝐵𝑘)) / 𝑃)) ∈ (𝔼‘𝑁))
36 simplrl 796 . . . . . . . . . . 11 (((((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) ∧ ((𝐶𝑘) ∈ ℝ ∧ (𝑇𝑘) ∈ ℝ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → (𝐶𝑘) ∈ ℝ)
3722, 36readdcld 9948 . . . . . . . . . 10 (((((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) ∧ ((𝐶𝑘) ∈ ℝ ∧ (𝑇𝑘) ∈ ℝ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → (((𝑃 − 1) · (𝐴𝑘)) + (𝐶𝑘)) ∈ ℝ)
3837, 18, 25redivcld 10732 . . . . . . . . 9 (((((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) ∧ ((𝐶𝑘) ∈ ℝ ∧ (𝑇𝑘) ∈ ℝ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → ((((𝑃 − 1) · (𝐴𝑘)) + (𝐶𝑘)) / 𝑃) ∈ ℝ)
3914, 38sylan 487 . . . . . . . 8 (((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ 𝑘 ∈ (1...𝑁)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → ((((𝑃 − 1) · (𝐴𝑘)) + (𝐶𝑘)) / 𝑃) ∈ ℝ)
4039an32s 842 . . . . . . 7 (((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) ∧ 𝑘 ∈ (1...𝑁)) → ((((𝑃 − 1) · (𝐴𝑘)) + (𝐶𝑘)) / 𝑃) ∈ ℝ)
4140ralrimiva 2949 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → ∀𝑘 ∈ (1...𝑁)((((𝑃 − 1) · (𝐴𝑘)) + (𝐶𝑘)) / 𝑃) ∈ ℝ)
42 mptelee 25575 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑘 ∈ (1...𝑁) ↦ ((((𝑃 − 1) · (𝐴𝑘)) + (𝐶𝑘)) / 𝑃)) ∈ (𝔼‘𝑁) ↔ ∀𝑘 ∈ (1...𝑁)((((𝑃 − 1) · (𝐴𝑘)) + (𝐶𝑘)) / 𝑃) ∈ ℝ))
4331, 42syl 17 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → ((𝑘 ∈ (1...𝑁) ↦ ((((𝑃 − 1) · (𝐴𝑘)) + (𝐶𝑘)) / 𝑃)) ∈ (𝔼‘𝑁) ↔ ∀𝑘 ∈ (1...𝑁)((((𝑃 − 1) · (𝐴𝑘)) + (𝐶𝑘)) / 𝑃) ∈ ℝ))
4441, 43mpbird 246 . . . . 5 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → (𝑘 ∈ (1...𝑁) ↦ ((((𝑃 − 1) · (𝐴𝑘)) + (𝐶𝑘)) / 𝑃)) ∈ (𝔼‘𝑁))
45443adant3 1074 . . . 4 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0) ∧ ∀𝑖 ∈ (1...𝑁)(((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑇𝑖))) = (((1 − 𝑄) · (𝐵𝑖)) + (𝑄 · (𝐶𝑖)))) → (𝑘 ∈ (1...𝑁) ↦ ((((𝑃 − 1) · (𝐴𝑘)) + (𝐶𝑘)) / 𝑃)) ∈ (𝔼‘𝑁))
46 fveecn 25582 . . . . . . . . . . . 12 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℂ)
4746expcom 450 . . . . . . . . . . 11 (𝑖 ∈ (1...𝑁) → (𝐴 ∈ (𝔼‘𝑁) → (𝐴𝑖) ∈ ℂ))
48 fveecn 25582 . . . . . . . . . . . 12 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℂ)
4948expcom 450 . . . . . . . . . . 11 (𝑖 ∈ (1...𝑁) → (𝐵 ∈ (𝔼‘𝑁) → (𝐵𝑖) ∈ ℂ))
5047, 49anim12d 584 . . . . . . . . . 10 (𝑖 ∈ (1...𝑁) → ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ)))
51 fveecn 25582 . . . . . . . . . . . 12 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℂ)
5251expcom 450 . . . . . . . . . . 11 (𝑖 ∈ (1...𝑁) → (𝐶 ∈ (𝔼‘𝑁) → (𝐶𝑖) ∈ ℂ))
53 fveecn 25582 . . . . . . . . . . . 12 ((𝑇 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝑇𝑖) ∈ ℂ)
5453expcom 450 . . . . . . . . . . 11 (𝑖 ∈ (1...𝑁) → (𝑇 ∈ (𝔼‘𝑁) → (𝑇𝑖) ∈ ℂ))
5552, 54anim12d 584 . . . . . . . . . 10 (𝑖 ∈ (1...𝑁) → ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁)) → ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)))
5650, 55anim12d 584 . . . . . . . . 9 (𝑖 ∈ (1...𝑁) → (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) → (((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ))))
5756impcom 445 . . . . . . . 8 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)))
58 eqcom 2617 . . . . . . . . . . . . . 14 ((𝑇𝑖) = (((((1 − 𝑄) · ((𝑃 − 1) · (𝐴𝑖))) + (𝑄 · ((𝑃 − 1) · (𝐴𝑖)))) + (((1 − 𝑄) · (𝐵𝑖)) + (𝑄 · (𝐶𝑖)))) / 𝑃) ↔ (((((1 − 𝑄) · ((𝑃 − 1) · (𝐴𝑖))) + (𝑄 · ((𝑃 − 1) · (𝐴𝑖)))) + (((1 − 𝑄) · (𝐵𝑖)) + (𝑄 · (𝐶𝑖)))) / 𝑃) = (𝑇𝑖))
59 ax-1cn 9873 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℂ
60 simpr2 1061 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → 𝑄 ∈ (0[,]1))
6115sseli 3564 . . . . . . . . . . . . . . . . . . . . 21 (𝑄 ∈ (0[,]1) → 𝑄 ∈ ℝ)
6261recnd 9947 . . . . . . . . . . . . . . . . . . . 20 (𝑄 ∈ (0[,]1) → 𝑄 ∈ ℂ)
6360, 62syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → 𝑄 ∈ ℂ)
64 subcl 10159 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℂ ∧ 𝑄 ∈ ℂ) → (1 − 𝑄) ∈ ℂ)
6559, 63, 64sylancr 694 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → (1 − 𝑄) ∈ ℂ)
66 simpr1 1060 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → 𝑃 ∈ (0[,]1))
6716recnd 9947 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ (0[,]1) → 𝑃 ∈ ℂ)
6866, 67syl 17 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → 𝑃 ∈ ℂ)
69 subcl 10159 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑃 − 1) ∈ ℂ)
7068, 59, 69sylancl 693 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → (𝑃 − 1) ∈ ℂ)
71 simplll 794 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → (𝐴𝑖) ∈ ℂ)
7270, 71mulcld 9939 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → ((𝑃 − 1) · (𝐴𝑖)) ∈ ℂ)
7365, 72mulcld 9939 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → ((1 − 𝑄) · ((𝑃 − 1) · (𝐴𝑖))) ∈ ℂ)
7463, 72mulcld 9939 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → (𝑄 · ((𝑃 − 1) · (𝐴𝑖))) ∈ ℂ)
7573, 74addcld 9938 . . . . . . . . . . . . . . . 16 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → (((1 − 𝑄) · ((𝑃 − 1) · (𝐴𝑖))) + (𝑄 · ((𝑃 − 1) · (𝐴𝑖)))) ∈ ℂ)
76 simpllr 795 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → (𝐵𝑖) ∈ ℂ)
7765, 76mulcld 9939 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → ((1 − 𝑄) · (𝐵𝑖)) ∈ ℂ)
78 simplrl 796 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → (𝐶𝑖) ∈ ℂ)
7963, 78mulcld 9939 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → (𝑄 · (𝐶𝑖)) ∈ ℂ)
8077, 79addcld 9938 . . . . . . . . . . . . . . . 16 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → (((1 − 𝑄) · (𝐵𝑖)) + (𝑄 · (𝐶𝑖))) ∈ ℂ)
8175, 80addcld 9938 . . . . . . . . . . . . . . 15 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → ((((1 − 𝑄) · ((𝑃 − 1) · (𝐴𝑖))) + (𝑄 · ((𝑃 − 1) · (𝐴𝑖)))) + (((1 − 𝑄) · (𝐵𝑖)) + (𝑄 · (𝐶𝑖)))) ∈ ℂ)
82 simplrr 797 . . . . . . . . . . . . . . 15 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → (𝑇𝑖) ∈ ℂ)
83 simpr3 1062 . . . . . . . . . . . . . . 15 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → 𝑃 ≠ 0)
8481, 68, 82, 83divmuld 10702 . . . . . . . . . . . . . 14 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → ((((((1 − 𝑄) · ((𝑃 − 1) · (𝐴𝑖))) + (𝑄 · ((𝑃 − 1) · (𝐴𝑖)))) + (((1 − 𝑄) · (𝐵𝑖)) + (𝑄 · (𝐶𝑖)))) / 𝑃) = (𝑇𝑖) ↔ (𝑃 · (𝑇𝑖)) = ((((1 − 𝑄) · ((𝑃 − 1) · (𝐴𝑖))) + (𝑄 · ((𝑃 − 1) · (𝐴𝑖)))) + (((1 − 𝑄) · (𝐵𝑖)) + (𝑄 · (𝐶𝑖))))))
8558, 84syl5bb 271 . . . . . . . . . . . . 13 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → ((𝑇𝑖) = (((((1 − 𝑄) · ((𝑃 − 1) · (𝐴𝑖))) + (𝑄 · ((𝑃 − 1) · (𝐴𝑖)))) + (((1 − 𝑄) · (𝐵𝑖)) + (𝑄 · (𝐶𝑖)))) / 𝑃) ↔ (𝑃 · (𝑇𝑖)) = ((((1 − 𝑄) · ((𝑃 − 1) · (𝐴𝑖))) + (𝑄 · ((𝑃 − 1) · (𝐴𝑖)))) + (((1 − 𝑄) · (𝐵𝑖)) + (𝑄 · (𝐶𝑖))))))
86 negsubdi2 10219 . . . . . . . . . . . . . . . . . . . 20 ((1 ∈ ℂ ∧ 𝑃 ∈ ℂ) → -(1 − 𝑃) = (𝑃 − 1))
8759, 68, 86sylancr 694 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → -(1 − 𝑃) = (𝑃 − 1))
8887oveq1d 6564 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → (-(1 − 𝑃) · (𝐴𝑖)) = ((𝑃 − 1) · (𝐴𝑖)))
89 subcl 10159 . . . . . . . . . . . . . . . . . . . 20 ((1 ∈ ℂ ∧ 𝑃 ∈ ℂ) → (1 − 𝑃) ∈ ℂ)
9059, 68, 89sylancr 694 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → (1 − 𝑃) ∈ ℂ)
9190, 71mulneg1d 10362 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → (-(1 − 𝑃) · (𝐴𝑖)) = -((1 − 𝑃) · (𝐴𝑖)))
92 npcan 10169 . . . . . . . . . . . . . . . . . . . . 21 ((1 ∈ ℂ ∧ 𝑄 ∈ ℂ) → ((1 − 𝑄) + 𝑄) = 1)
9359, 63, 92sylancr 694 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → ((1 − 𝑄) + 𝑄) = 1)
9493oveq1d 6564 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → (((1 − 𝑄) + 𝑄) · ((𝑃 − 1) · (𝐴𝑖))) = (1 · ((𝑃 − 1) · (𝐴𝑖))))
9565, 63, 72adddird 9944 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → (((1 − 𝑄) + 𝑄) · ((𝑃 − 1) · (𝐴𝑖))) = (((1 − 𝑄) · ((𝑃 − 1) · (𝐴𝑖))) + (𝑄 · ((𝑃 − 1) · (𝐴𝑖)))))
9672mulid2d 9937 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → (1 · ((𝑃 − 1) · (𝐴𝑖))) = ((𝑃 − 1) · (𝐴𝑖)))
9794, 95, 963eqtr3rd 2653 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → ((𝑃 − 1) · (𝐴𝑖)) = (((1 − 𝑄) · ((𝑃 − 1) · (𝐴𝑖))) + (𝑄 · ((𝑃 − 1) · (𝐴𝑖)))))
9888, 91, 973eqtr3d 2652 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → -((1 − 𝑃) · (𝐴𝑖)) = (((1 − 𝑄) · ((𝑃 − 1) · (𝐴𝑖))) + (𝑄 · ((𝑃 − 1) · (𝐴𝑖)))))
9998oveq2d 6565 . . . . . . . . . . . . . . . 16 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → ((((1 − 𝑄) · (𝐵𝑖)) + (𝑄 · (𝐶𝑖))) + -((1 − 𝑃) · (𝐴𝑖))) = ((((1 − 𝑄) · (𝐵𝑖)) + (𝑄 · (𝐶𝑖))) + (((1 − 𝑄) · ((𝑃 − 1) · (𝐴𝑖))) + (𝑄 · ((𝑃 − 1) · (𝐴𝑖))))))
10090, 71mulcld 9939 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → ((1 − 𝑃) · (𝐴𝑖)) ∈ ℂ)
10180, 100negsubd 10277 . . . . . . . . . . . . . . . 16 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → ((((1 − 𝑄) · (𝐵𝑖)) + (𝑄 · (𝐶𝑖))) + -((1 − 𝑃) · (𝐴𝑖))) = ((((1 − 𝑄) · (𝐵𝑖)) + (𝑄 · (𝐶𝑖))) − ((1 − 𝑃) · (𝐴𝑖))))
10280, 75addcomd 10117 . . . . . . . . . . . . . . . 16 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → ((((1 − 𝑄) · (𝐵𝑖)) + (𝑄 · (𝐶𝑖))) + (((1 − 𝑄) · ((𝑃 − 1) · (𝐴𝑖))) + (𝑄 · ((𝑃 − 1) · (𝐴𝑖))))) = ((((1 − 𝑄) · ((𝑃 − 1) · (𝐴𝑖))) + (𝑄 · ((𝑃 − 1) · (𝐴𝑖)))) + (((1 − 𝑄) · (𝐵𝑖)) + (𝑄 · (𝐶𝑖)))))
10399, 101, 1023eqtr3d 2652 . . . . . . . . . . . . . . 15 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → ((((1 − 𝑄) · (𝐵𝑖)) + (𝑄 · (𝐶𝑖))) − ((1 − 𝑃) · (𝐴𝑖))) = ((((1 − 𝑄) · ((𝑃 − 1) · (𝐴𝑖))) + (𝑄 · ((𝑃 − 1) · (𝐴𝑖)))) + (((1 − 𝑄) · (𝐵𝑖)) + (𝑄 · (𝐶𝑖)))))
104103eqeq1d 2612 . . . . . . . . . . . . . 14 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → (((((1 − 𝑄) · (𝐵𝑖)) + (𝑄 · (𝐶𝑖))) − ((1 − 𝑃) · (𝐴𝑖))) = (𝑃 · (𝑇𝑖)) ↔ ((((1 − 𝑄) · ((𝑃 − 1) · (𝐴𝑖))) + (𝑄 · ((𝑃 − 1) · (𝐴𝑖)))) + (((1 − 𝑄) · (𝐵𝑖)) + (𝑄 · (𝐶𝑖)))) = (𝑃 · (𝑇𝑖))))
105 eqcom 2617 . . . . . . . . . . . . . 14 (((((1 − 𝑄) · ((𝑃 − 1) · (𝐴𝑖))) + (𝑄 · ((𝑃 − 1) · (𝐴𝑖)))) + (((1 − 𝑄) · (𝐵𝑖)) + (𝑄 · (𝐶𝑖)))) = (𝑃 · (𝑇𝑖)) ↔ (𝑃 · (𝑇𝑖)) = ((((1 − 𝑄) · ((𝑃 − 1) · (𝐴𝑖))) + (𝑄 · ((𝑃 − 1) · (𝐴𝑖)))) + (((1 − 𝑄) · (𝐵𝑖)) + (𝑄 · (𝐶𝑖)))))
106104, 105syl6bb 275 . . . . . . . . . . . . 13 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → (((((1 − 𝑄) · (𝐵𝑖)) + (𝑄 · (𝐶𝑖))) − ((1 − 𝑃) · (𝐴𝑖))) = (𝑃 · (𝑇𝑖)) ↔ (𝑃 · (𝑇𝑖)) = ((((1 − 𝑄) · ((𝑃 − 1) · (𝐴𝑖))) + (𝑄 · ((𝑃 − 1) · (𝐴𝑖)))) + (((1 − 𝑄) · (𝐵𝑖)) + (𝑄 · (𝐶𝑖))))))
10785, 106bitr4d 270 . . . . . . . . . . . 12 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → ((𝑇𝑖) = (((((1 − 𝑄) · ((𝑃 − 1) · (𝐴𝑖))) + (𝑄 · ((𝑃 − 1) · (𝐴𝑖)))) + (((1 − 𝑄) · (𝐵𝑖)) + (𝑄 · (𝐶𝑖)))) / 𝑃) ↔ ((((1 − 𝑄) · (𝐵𝑖)) + (𝑄 · (𝐶𝑖))) − ((1 − 𝑃) · (𝐴𝑖))) = (𝑃 · (𝑇𝑖))))
10873, 74, 77, 79add4d 10143 . . . . . . . . . . . . . . . 16 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → ((((1 − 𝑄) · ((𝑃 − 1) · (𝐴𝑖))) + (𝑄 · ((𝑃 − 1) · (𝐴𝑖)))) + (((1 − 𝑄) · (𝐵𝑖)) + (𝑄 · (𝐶𝑖)))) = ((((1 − 𝑄) · ((𝑃 − 1) · (𝐴𝑖))) + ((1 − 𝑄) · (𝐵𝑖))) + ((𝑄 · ((𝑃 − 1) · (𝐴𝑖))) + (𝑄 · (𝐶𝑖)))))
10965, 72, 76adddid 9943 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → ((1 − 𝑄) · (((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖))) = (((1 − 𝑄) · ((𝑃 − 1) · (𝐴𝑖))) + ((1 − 𝑄) · (𝐵𝑖))))
11063, 72, 78adddid 9943 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → (𝑄 · (((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖))) = ((𝑄 · ((𝑃 − 1) · (𝐴𝑖))) + (𝑄 · (𝐶𝑖))))
111109, 110oveq12d 6567 . . . . . . . . . . . . . . . 16 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → (((1 − 𝑄) · (((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖))) + (𝑄 · (((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)))) = ((((1 − 𝑄) · ((𝑃 − 1) · (𝐴𝑖))) + ((1 − 𝑄) · (𝐵𝑖))) + ((𝑄 · ((𝑃 − 1) · (𝐴𝑖))) + (𝑄 · (𝐶𝑖)))))
112108, 111eqtr4d 2647 . . . . . . . . . . . . . . 15 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → ((((1 − 𝑄) · ((𝑃 − 1) · (𝐴𝑖))) + (𝑄 · ((𝑃 − 1) · (𝐴𝑖)))) + (((1 − 𝑄) · (𝐵𝑖)) + (𝑄 · (𝐶𝑖)))) = (((1 − 𝑄) · (((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖))) + (𝑄 · (((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)))))
113112oveq1d 6564 . . . . . . . . . . . . . 14 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → (((((1 − 𝑄) · ((𝑃 − 1) · (𝐴𝑖))) + (𝑄 · ((𝑃 − 1) · (𝐴𝑖)))) + (((1 − 𝑄) · (𝐵𝑖)) + (𝑄 · (𝐶𝑖)))) / 𝑃) = ((((1 − 𝑄) · (((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖))) + (𝑄 · (((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)))) / 𝑃))
11472, 76addcld 9938 . . . . . . . . . . . . . . . 16 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → (((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) ∈ ℂ)
11565, 114mulcld 9939 . . . . . . . . . . . . . . 15 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → ((1 − 𝑄) · (((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖))) ∈ ℂ)
11672, 78addcld 9938 . . . . . . . . . . . . . . . 16 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → (((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)) ∈ ℂ)
11763, 116mulcld 9939 . . . . . . . . . . . . . . 15 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → (𝑄 · (((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖))) ∈ ℂ)
118115, 117, 68, 83divdird 10718 . . . . . . . . . . . . . 14 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → ((((1 − 𝑄) · (((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖))) + (𝑄 · (((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)))) / 𝑃) = ((((1 − 𝑄) · (((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖))) / 𝑃) + ((𝑄 · (((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖))) / 𝑃)))
11965, 114, 68, 83divassd 10715 . . . . . . . . . . . . . . 15 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → (((1 − 𝑄) · (((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖))) / 𝑃) = ((1 − 𝑄) · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃)))
12063, 116, 68, 83divassd 10715 . . . . . . . . . . . . . . 15 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → ((𝑄 · (((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖))) / 𝑃) = (𝑄 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)) / 𝑃)))
121119, 120oveq12d 6567 . . . . . . . . . . . . . 14 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → ((((1 − 𝑄) · (((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖))) / 𝑃) + ((𝑄 · (((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖))) / 𝑃)) = (((1 − 𝑄) · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃)) + (𝑄 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)) / 𝑃))))
122113, 118, 1213eqtrd 2648 . . . . . . . . . . . . 13 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → (((((1 − 𝑄) · ((𝑃 − 1) · (𝐴𝑖))) + (𝑄 · ((𝑃 − 1) · (𝐴𝑖)))) + (((1 − 𝑄) · (𝐵𝑖)) + (𝑄 · (𝐶𝑖)))) / 𝑃) = (((1 − 𝑄) · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃)) + (𝑄 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)) / 𝑃))))
123122eqeq2d 2620 . . . . . . . . . . . 12 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → ((𝑇𝑖) = (((((1 − 𝑄) · ((𝑃 − 1) · (𝐴𝑖))) + (𝑄 · ((𝑃 − 1) · (𝐴𝑖)))) + (((1 − 𝑄) · (𝐵𝑖)) + (𝑄 · (𝐶𝑖)))) / 𝑃) ↔ (𝑇𝑖) = (((1 − 𝑄) · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃)) + (𝑄 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)) / 𝑃)))))
12468, 82mulcld 9939 . . . . . . . . . . . . 13 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → (𝑃 · (𝑇𝑖)) ∈ ℂ)
12580, 100, 124subaddd 10289 . . . . . . . . . . . 12 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → (((((1 − 𝑄) · (𝐵𝑖)) + (𝑄 · (𝐶𝑖))) − ((1 − 𝑃) · (𝐴𝑖))) = (𝑃 · (𝑇𝑖)) ↔ (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑇𝑖))) = (((1 − 𝑄) · (𝐵𝑖)) + (𝑄 · (𝐶𝑖)))))
126107, 123, 1253bitr3rd 298 . . . . . . . . . . 11 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → ((((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑇𝑖))) = (((1 − 𝑄) · (𝐵𝑖)) + (𝑄 · (𝐶𝑖))) ↔ (𝑇𝑖) = (((1 − 𝑄) · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃)) + (𝑄 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)) / 𝑃)))))
127126biimpd 218 . . . . . . . . . 10 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → ((((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑇𝑖))) = (((1 − 𝑄) · (𝐵𝑖)) + (𝑄 · (𝐶𝑖))) → (𝑇𝑖) = (((1 − 𝑄) · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃)) + (𝑄 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)) / 𝑃)))))
128 npncan2 10187 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℂ ∧ 𝑃 ∈ ℂ) → ((1 − 𝑃) + (𝑃 − 1)) = 0)
12959, 68, 128sylancr 694 . . . . . . . . . . . . . . . 16 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → ((1 − 𝑃) + (𝑃 − 1)) = 0)
130129oveq1d 6564 . . . . . . . . . . . . . . 15 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → (((1 − 𝑃) + (𝑃 − 1)) · (𝐴𝑖)) = (0 · (𝐴𝑖)))
13190, 70, 71adddird 9944 . . . . . . . . . . . . . . 15 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → (((1 − 𝑃) + (𝑃 − 1)) · (𝐴𝑖)) = (((1 − 𝑃) · (𝐴𝑖)) + ((𝑃 − 1) · (𝐴𝑖))))
132 mul02 10093 . . . . . . . . . . . . . . . 16 ((𝐴𝑖) ∈ ℂ → (0 · (𝐴𝑖)) = 0)
133132ad3antrrr 762 . . . . . . . . . . . . . . 15 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → (0 · (𝐴𝑖)) = 0)
134130, 131, 1333eqtr3d 2652 . . . . . . . . . . . . . 14 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → (((1 − 𝑃) · (𝐴𝑖)) + ((𝑃 − 1) · (𝐴𝑖))) = 0)
135134oveq1d 6564 . . . . . . . . . . . . 13 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → ((((1 − 𝑃) · (𝐴𝑖)) + ((𝑃 − 1) · (𝐴𝑖))) + (𝐵𝑖)) = (0 + (𝐵𝑖)))
136100, 72, 76addassd 9941 . . . . . . . . . . . . 13 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → ((((1 − 𝑃) · (𝐴𝑖)) + ((𝑃 − 1) · (𝐴𝑖))) + (𝐵𝑖)) = (((1 − 𝑃) · (𝐴𝑖)) + (((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖))))
13776addid2d 10116 . . . . . . . . . . . . 13 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → (0 + (𝐵𝑖)) = (𝐵𝑖))
138135, 136, 1373eqtr3rd 2653 . . . . . . . . . . . 12 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → (𝐵𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖))))
139114, 68, 83divcan2d 10682 . . . . . . . . . . . . 13 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → (𝑃 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃)) = (((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)))
140139oveq2d 6565 . . . . . . . . . . . 12 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃))) = (((1 − 𝑃) · (𝐴𝑖)) + (((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖))))
141138, 140eqtr4d 2647 . . . . . . . . . . 11 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → (𝐵𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃))))
142134oveq1d 6564 . . . . . . . . . . . . 13 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → ((((1 − 𝑃) · (𝐴𝑖)) + ((𝑃 − 1) · (𝐴𝑖))) + (𝐶𝑖)) = (0 + (𝐶𝑖)))
143100, 72, 78addassd 9941 . . . . . . . . . . . . 13 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → ((((1 − 𝑃) · (𝐴𝑖)) + ((𝑃 − 1) · (𝐴𝑖))) + (𝐶𝑖)) = (((1 − 𝑃) · (𝐴𝑖)) + (((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖))))
14478addid2d 10116 . . . . . . . . . . . . 13 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → (0 + (𝐶𝑖)) = (𝐶𝑖))
145142, 143, 1443eqtr3rd 2653 . . . . . . . . . . . 12 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → (𝐶𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖))))
146116, 68, 83divcan2d 10682 . . . . . . . . . . . . 13 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → (𝑃 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)) / 𝑃)) = (((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)))
147146oveq2d 6565 . . . . . . . . . . . 12 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)) / 𝑃))) = (((1 − 𝑃) · (𝐴𝑖)) + (((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖))))
148145, 147eqtr4d 2647 . . . . . . . . . . 11 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → (𝐶𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)) / 𝑃))))
149141, 148jca 553 . . . . . . . . . 10 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → ((𝐵𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃))) ∧ (𝐶𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)) / 𝑃)))))
150127, 149jctild 564 . . . . . . . . 9 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → ((((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑇𝑖))) = (((1 − 𝑄) · (𝐵𝑖)) + (𝑄 · (𝐶𝑖))) → (((𝐵𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃))) ∧ (𝐶𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)) / 𝑃)))) ∧ (𝑇𝑖) = (((1 − 𝑄) · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃)) + (𝑄 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)) / 𝑃))))))
151 df-3an 1033 . . . . . . . . 9 (((𝐵𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃))) ∧ (𝐶𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)) / 𝑃))) ∧ (𝑇𝑖) = (((1 − 𝑄) · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃)) + (𝑄 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)) / 𝑃)))) ↔ (((𝐵𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃))) ∧ (𝐶𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)) / 𝑃)))) ∧ (𝑇𝑖) = (((1 − 𝑄) · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃)) + (𝑄 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)) / 𝑃)))))
152150, 151syl6ibr 241 . . . . . . . 8 (((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) ∧ ((𝐶𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → ((((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑇𝑖))) = (((1 − 𝑄) · (𝐵𝑖)) + (𝑄 · (𝐶𝑖))) → ((𝐵𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃))) ∧ (𝐶𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)) / 𝑃))) ∧ (𝑇𝑖) = (((1 − 𝑄) · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃)) + (𝑄 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)) / 𝑃))))))
15357, 152sylan 487 . . . . . . 7 (((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → ((((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑇𝑖))) = (((1 − 𝑄) · (𝐵𝑖)) + (𝑄 · (𝐶𝑖))) → ((𝐵𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃))) ∧ (𝐶𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)) / 𝑃))) ∧ (𝑇𝑖) = (((1 − 𝑄) · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃)) + (𝑄 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)) / 𝑃))))))
154153an32s 842 . . . . . 6 (((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) ∧ 𝑖 ∈ (1...𝑁)) → ((((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑇𝑖))) = (((1 − 𝑄) · (𝐵𝑖)) + (𝑄 · (𝐶𝑖))) → ((𝐵𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃))) ∧ (𝐶𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)) / 𝑃))) ∧ (𝑇𝑖) = (((1 − 𝑄) · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃)) + (𝑄 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)) / 𝑃))))))
155154ralimdva 2945 . . . . 5 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0)) → (∀𝑖 ∈ (1...𝑁)(((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑇𝑖))) = (((1 − 𝑄) · (𝐵𝑖)) + (𝑄 · (𝐶𝑖))) → ∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃))) ∧ (𝐶𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)) / 𝑃))) ∧ (𝑇𝑖) = (((1 − 𝑄) · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃)) + (𝑄 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)) / 𝑃))))))
1561553impia 1253 . . . 4 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0) ∧ ∀𝑖 ∈ (1...𝑁)(((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑇𝑖))) = (((1 − 𝑄) · (𝐵𝑖)) + (𝑄 · (𝐶𝑖)))) → ∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃))) ∧ (𝐶𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)) / 𝑃))) ∧ (𝑇𝑖) = (((1 − 𝑄) · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃)) + (𝑄 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)) / 𝑃)))))
157 fveq1 6102 . . . . . . . 8 (𝑥 = (𝑘 ∈ (1...𝑁) ↦ ((((𝑃 − 1) · (𝐴𝑘)) + (𝐵𝑘)) / 𝑃)) → (𝑥𝑖) = ((𝑘 ∈ (1...𝑁) ↦ ((((𝑃 − 1) · (𝐴𝑘)) + (𝐵𝑘)) / 𝑃))‘𝑖))
158 fveq2 6103 . . . . . . . . . . . 12 (𝑘 = 𝑖 → (𝐴𝑘) = (𝐴𝑖))
159158oveq2d 6565 . . . . . . . . . . 11 (𝑘 = 𝑖 → ((𝑃 − 1) · (𝐴𝑘)) = ((𝑃 − 1) · (𝐴𝑖)))
160 fveq2 6103 . . . . . . . . . . 11 (𝑘 = 𝑖 → (𝐵𝑘) = (𝐵𝑖))
161159, 160oveq12d 6567 . . . . . . . . . 10 (𝑘 = 𝑖 → (((𝑃 − 1) · (𝐴𝑘)) + (𝐵𝑘)) = (((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)))
162161oveq1d 6564 . . . . . . . . 9 (𝑘 = 𝑖 → ((((𝑃 − 1) · (𝐴𝑘)) + (𝐵𝑘)) / 𝑃) = ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃))
163 eqid 2610 . . . . . . . . 9 (𝑘 ∈ (1...𝑁) ↦ ((((𝑃 − 1) · (𝐴𝑘)) + (𝐵𝑘)) / 𝑃)) = (𝑘 ∈ (1...𝑁) ↦ ((((𝑃 − 1) · (𝐴𝑘)) + (𝐵𝑘)) / 𝑃))
164 ovex 6577 . . . . . . . . 9 ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃) ∈ V
165162, 163, 164fvmpt 6191 . . . . . . . 8 (𝑖 ∈ (1...𝑁) → ((𝑘 ∈ (1...𝑁) ↦ ((((𝑃 − 1) · (𝐴𝑘)) + (𝐵𝑘)) / 𝑃))‘𝑖) = ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃))
166157, 165sylan9eq 2664 . . . . . . 7 ((𝑥 = (𝑘 ∈ (1...𝑁) ↦ ((((𝑃 − 1) · (𝐴𝑘)) + (𝐵𝑘)) / 𝑃)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑥𝑖) = ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃))
167 oveq2 6557 . . . . . . . . . 10 ((𝑥𝑖) = ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃) → (𝑃 · (𝑥𝑖)) = (𝑃 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃)))
168167oveq2d 6565 . . . . . . . . 9 ((𝑥𝑖) = ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃) → (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑥𝑖))) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃))))
169168eqeq2d 2620 . . . . . . . 8 ((𝑥𝑖) = ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃) → ((𝐵𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑥𝑖))) ↔ (𝐵𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃)))))
170 oveq2 6557 . . . . . . . . . 10 ((𝑥𝑖) = ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃) → ((1 − 𝑄) · (𝑥𝑖)) = ((1 − 𝑄) · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃)))
171170oveq1d 6564 . . . . . . . . 9 ((𝑥𝑖) = ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃) → (((1 − 𝑄) · (𝑥𝑖)) + (𝑄 · (𝑦𝑖))) = (((1 − 𝑄) · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃)) + (𝑄 · (𝑦𝑖))))
172171eqeq2d 2620 . . . . . . . 8 ((𝑥𝑖) = ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃) → ((𝑇𝑖) = (((1 − 𝑄) · (𝑥𝑖)) + (𝑄 · (𝑦𝑖))) ↔ (𝑇𝑖) = (((1 − 𝑄) · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃)) + (𝑄 · (𝑦𝑖)))))
173169, 1723anbi13d 1393 . . . . . . 7 ((𝑥𝑖) = ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃) → (((𝐵𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑄) · (𝑥𝑖)) + (𝑄 · (𝑦𝑖)))) ↔ ((𝐵𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃))) ∧ (𝐶𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑄) · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃)) + (𝑄 · (𝑦𝑖))))))
174166, 173syl 17 . . . . . 6 ((𝑥 = (𝑘 ∈ (1...𝑁) ↦ ((((𝑃 − 1) · (𝐴𝑘)) + (𝐵𝑘)) / 𝑃)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐵𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑄) · (𝑥𝑖)) + (𝑄 · (𝑦𝑖)))) ↔ ((𝐵𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃))) ∧ (𝐶𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑄) · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃)) + (𝑄 · (𝑦𝑖))))))
175174ralbidva 2968 . . . . 5 (𝑥 = (𝑘 ∈ (1...𝑁) ↦ ((((𝑃 − 1) · (𝐴𝑘)) + (𝐵𝑘)) / 𝑃)) → (∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑄) · (𝑥𝑖)) + (𝑄 · (𝑦𝑖)))) ↔ ∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃))) ∧ (𝐶𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑄) · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃)) + (𝑄 · (𝑦𝑖))))))
176 fveq1 6102 . . . . . . . 8 (𝑦 = (𝑘 ∈ (1...𝑁) ↦ ((((𝑃 − 1) · (𝐴𝑘)) + (𝐶𝑘)) / 𝑃)) → (𝑦𝑖) = ((𝑘 ∈ (1...𝑁) ↦ ((((𝑃 − 1) · (𝐴𝑘)) + (𝐶𝑘)) / 𝑃))‘𝑖))
177 fveq2 6103 . . . . . . . . . . 11 (𝑘 = 𝑖 → (𝐶𝑘) = (𝐶𝑖))
178159, 177oveq12d 6567 . . . . . . . . . 10 (𝑘 = 𝑖 → (((𝑃 − 1) · (𝐴𝑘)) + (𝐶𝑘)) = (((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)))
179178oveq1d 6564 . . . . . . . . 9 (𝑘 = 𝑖 → ((((𝑃 − 1) · (𝐴𝑘)) + (𝐶𝑘)) / 𝑃) = ((((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)) / 𝑃))
180 eqid 2610 . . . . . . . . 9 (𝑘 ∈ (1...𝑁) ↦ ((((𝑃 − 1) · (𝐴𝑘)) + (𝐶𝑘)) / 𝑃)) = (𝑘 ∈ (1...𝑁) ↦ ((((𝑃 − 1) · (𝐴𝑘)) + (𝐶𝑘)) / 𝑃))
181 ovex 6577 . . . . . . . . 9 ((((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)) / 𝑃) ∈ V
182179, 180, 181fvmpt 6191 . . . . . . . 8 (𝑖 ∈ (1...𝑁) → ((𝑘 ∈ (1...𝑁) ↦ ((((𝑃 − 1) · (𝐴𝑘)) + (𝐶𝑘)) / 𝑃))‘𝑖) = ((((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)) / 𝑃))
183176, 182sylan9eq 2664 . . . . . . 7 ((𝑦 = (𝑘 ∈ (1...𝑁) ↦ ((((𝑃 − 1) · (𝐴𝑘)) + (𝐶𝑘)) / 𝑃)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑦𝑖) = ((((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)) / 𝑃))
184 oveq2 6557 . . . . . . . . . 10 ((𝑦𝑖) = ((((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)) / 𝑃) → (𝑃 · (𝑦𝑖)) = (𝑃 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)) / 𝑃)))
185184oveq2d 6565 . . . . . . . . 9 ((𝑦𝑖) = ((((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)) / 𝑃) → (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑦𝑖))) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)) / 𝑃))))
186185eqeq2d 2620 . . . . . . . 8 ((𝑦𝑖) = ((((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)) / 𝑃) → ((𝐶𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑦𝑖))) ↔ (𝐶𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)) / 𝑃)))))
187 oveq2 6557 . . . . . . . . . 10 ((𝑦𝑖) = ((((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)) / 𝑃) → (𝑄 · (𝑦𝑖)) = (𝑄 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)) / 𝑃)))
188187oveq2d 6565 . . . . . . . . 9 ((𝑦𝑖) = ((((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)) / 𝑃) → (((1 − 𝑄) · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃)) + (𝑄 · (𝑦𝑖))) = (((1 − 𝑄) · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃)) + (𝑄 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)) / 𝑃))))
189188eqeq2d 2620 . . . . . . . 8 ((𝑦𝑖) = ((((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)) / 𝑃) → ((𝑇𝑖) = (((1 − 𝑄) · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃)) + (𝑄 · (𝑦𝑖))) ↔ (𝑇𝑖) = (((1 − 𝑄) · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃)) + (𝑄 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)) / 𝑃)))))
190186, 1893anbi23d 1394 . . . . . . 7 ((𝑦𝑖) = ((((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)) / 𝑃) → (((𝐵𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃))) ∧ (𝐶𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑄) · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃)) + (𝑄 · (𝑦𝑖)))) ↔ ((𝐵𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃))) ∧ (𝐶𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)) / 𝑃))) ∧ (𝑇𝑖) = (((1 − 𝑄) · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃)) + (𝑄 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)) / 𝑃))))))
191183, 190syl 17 . . . . . 6 ((𝑦 = (𝑘 ∈ (1...𝑁) ↦ ((((𝑃 − 1) · (𝐴𝑘)) + (𝐶𝑘)) / 𝑃)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐵𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃))) ∧ (𝐶𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑄) · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃)) + (𝑄 · (𝑦𝑖)))) ↔ ((𝐵𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃))) ∧ (𝐶𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)) / 𝑃))) ∧ (𝑇𝑖) = (((1 − 𝑄) · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃)) + (𝑄 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)) / 𝑃))))))
192191ralbidva 2968 . . . . 5 (𝑦 = (𝑘 ∈ (1...𝑁) ↦ ((((𝑃 − 1) · (𝐴𝑘)) + (𝐶𝑘)) / 𝑃)) → (∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃))) ∧ (𝐶𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑄) · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃)) + (𝑄 · (𝑦𝑖)))) ↔ ∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃))) ∧ (𝐶𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)) / 𝑃))) ∧ (𝑇𝑖) = (((1 − 𝑄) · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃)) + (𝑄 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)) / 𝑃))))))
193175, 192rspc2ev 3295 . . . 4 (((𝑘 ∈ (1...𝑁) ↦ ((((𝑃 − 1) · (𝐴𝑘)) + (𝐵𝑘)) / 𝑃)) ∈ (𝔼‘𝑁) ∧ (𝑘 ∈ (1...𝑁) ↦ ((((𝑃 − 1) · (𝐴𝑘)) + (𝐶𝑘)) / 𝑃)) ∈ (𝔼‘𝑁) ∧ ∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃))) ∧ (𝐶𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)) / 𝑃))) ∧ (𝑇𝑖) = (((1 − 𝑄) · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐵𝑖)) / 𝑃)) + (𝑄 · ((((𝑃 − 1) · (𝐴𝑖)) + (𝐶𝑖)) / 𝑃))))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑄) · (𝑥𝑖)) + (𝑄 · (𝑦𝑖)))))
19435, 45, 156, 193syl3anc 1318 . . 3 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0) ∧ ∀𝑖 ∈ (1...𝑁)(((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑇𝑖))) = (((1 − 𝑄) · (𝐵𝑖)) + (𝑄 · (𝐶𝑖)))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑄) · (𝑥𝑖)) + (𝑄 · (𝑦𝑖)))))
195 oveq2 6557 . . . . . . . . . 10 (𝑟 = 𝑃 → (1 − 𝑟) = (1 − 𝑃))
196195oveq1d 6564 . . . . . . . . 9 (𝑟 = 𝑃 → ((1 − 𝑟) · (𝐴𝑖)) = ((1 − 𝑃) · (𝐴𝑖)))
197 oveq1 6556 . . . . . . . . 9 (𝑟 = 𝑃 → (𝑟 · (𝑥𝑖)) = (𝑃 · (𝑥𝑖)))
198196, 197oveq12d 6567 . . . . . . . 8 (𝑟 = 𝑃 → (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑥𝑖))))
199198eqeq2d 2620 . . . . . . 7 (𝑟 = 𝑃 → ((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ↔ (𝐵𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑥𝑖)))))
2001993anbi1d 1395 . . . . . 6 (𝑟 = 𝑃 → (((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))) ↔ ((𝐵𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖))))))
201200ralbidv 2969 . . . . 5 (𝑟 = 𝑃 → (∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))) ↔ ∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖))))))
2022012rexbidv 3039 . . . 4 (𝑟 = 𝑃 → (∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))) ↔ ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖))))))
203 oveq2 6557 . . . . . . . . . 10 (𝑠 = 𝑃 → (1 − 𝑠) = (1 − 𝑃))
204203oveq1d 6564 . . . . . . . . 9 (𝑠 = 𝑃 → ((1 − 𝑠) · (𝐴𝑖)) = ((1 − 𝑃) · (𝐴𝑖)))
205 oveq1 6556 . . . . . . . . 9 (𝑠 = 𝑃 → (𝑠 · (𝑦𝑖)) = (𝑃 · (𝑦𝑖)))
206204, 205oveq12d 6567 . . . . . . . 8 (𝑠 = 𝑃 → (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑦𝑖))))
207206eqeq2d 2620 . . . . . . 7 (𝑠 = 𝑃 → ((𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ↔ (𝐶𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑦𝑖)))))
2082073anbi2d 1396 . . . . . 6 (𝑠 = 𝑃 → (((𝐵𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))) ↔ ((𝐵𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖))))))
209208ralbidv 2969 . . . . 5 (𝑠 = 𝑃 → (∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))) ↔ ∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖))))))
2102092rexbidv 3039 . . . 4 (𝑠 = 𝑃 → (∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))) ↔ ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖))))))
211 oveq2 6557 . . . . . . . . . 10 (𝑢 = 𝑄 → (1 − 𝑢) = (1 − 𝑄))
212211oveq1d 6564 . . . . . . . . 9 (𝑢 = 𝑄 → ((1 − 𝑢) · (𝑥𝑖)) = ((1 − 𝑄) · (𝑥𝑖)))
213 oveq1 6556 . . . . . . . . 9 (𝑢 = 𝑄 → (𝑢 · (𝑦𝑖)) = (𝑄 · (𝑦𝑖)))
214212, 213oveq12d 6567 . . . . . . . 8 (𝑢 = 𝑄 → (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖))) = (((1 − 𝑄) · (𝑥𝑖)) + (𝑄 · (𝑦𝑖))))
215214eqeq2d 2620 . . . . . . 7 (𝑢 = 𝑄 → ((𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖))) ↔ (𝑇𝑖) = (((1 − 𝑄) · (𝑥𝑖)) + (𝑄 · (𝑦𝑖)))))
2162153anbi3d 1397 . . . . . 6 (𝑢 = 𝑄 → (((𝐵𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))) ↔ ((𝐵𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑄) · (𝑥𝑖)) + (𝑄 · (𝑦𝑖))))))
217216ralbidv 2969 . . . . 5 (𝑢 = 𝑄 → (∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))) ↔ ∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑄) · (𝑥𝑖)) + (𝑄 · (𝑦𝑖))))))
2182172rexbidv 3039 . . . 4 (𝑢 = 𝑄 → (∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))) ↔ ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑄) · (𝑥𝑖)) + (𝑄 · (𝑦𝑖))))))
219202, 210, 218rspc3ev 3297 . . 3 (((𝑃 ∈ (0[,]1) ∧ 𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1)) ∧ ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑄) · (𝑥𝑖)) + (𝑄 · (𝑦𝑖))))) → ∃𝑟 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))))
2201, 1, 2, 194, 219syl31anc 1321 . 2 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0) ∧ ∀𝑖 ∈ (1...𝑁)(((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑇𝑖))) = (((1 − 𝑄) · (𝐵𝑖)) + (𝑄 · (𝐶𝑖)))) → ∃𝑟 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))))
221 rexcom 3080 . . . . . 6 (∃𝑢 ∈ (0[,]1)∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))) ↔ ∃𝑥 ∈ (𝔼‘𝑁)∃𝑢 ∈ (0[,]1)∃𝑦 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))))
222221rexbii 3023 . . . . 5 (∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))) ↔ ∃𝑠 ∈ (0[,]1)∃𝑥 ∈ (𝔼‘𝑁)∃𝑢 ∈ (0[,]1)∃𝑦 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))))
223 rexcom 3080 . . . . 5 (∃𝑠 ∈ (0[,]1)∃𝑥 ∈ (𝔼‘𝑁)∃𝑢 ∈ (0[,]1)∃𝑦 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))) ↔ ∃𝑥 ∈ (𝔼‘𝑁)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∃𝑦 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))))
224222, 223bitri 263 . . . 4 (∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))) ↔ ∃𝑥 ∈ (𝔼‘𝑁)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∃𝑦 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))))
225224rexbii 3023 . . 3 (∃𝑟 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))) ↔ ∃𝑟 ∈ (0[,]1)∃𝑥 ∈ (𝔼‘𝑁)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∃𝑦 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))))
226 rexcom 3080 . . 3 (∃𝑟 ∈ (0[,]1)∃𝑥 ∈ (𝔼‘𝑁)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∃𝑦 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))) ↔ ∃𝑥 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∃𝑦 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))))
227 rexcom 3080 . . . . . . . 8 (∃𝑢 ∈ (0[,]1)∃𝑦 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))) ↔ ∃𝑦 ∈ (𝔼‘𝑁)∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))))
228227rexbii 3023 . . . . . . 7 (∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∃𝑦 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))) ↔ ∃𝑠 ∈ (0[,]1)∃𝑦 ∈ (𝔼‘𝑁)∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))))
229 rexcom 3080 . . . . . . 7 (∃𝑠 ∈ (0[,]1)∃𝑦 ∈ (𝔼‘𝑁)∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))) ↔ ∃𝑦 ∈ (𝔼‘𝑁)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))))
230228, 229bitri 263 . . . . . 6 (∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∃𝑦 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))) ↔ ∃𝑦 ∈ (𝔼‘𝑁)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))))
231230rexbii 3023 . . . . 5 (∃𝑟 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∃𝑦 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))) ↔ ∃𝑟 ∈ (0[,]1)∃𝑦 ∈ (𝔼‘𝑁)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))))
232 rexcom 3080 . . . . 5 (∃𝑟 ∈ (0[,]1)∃𝑦 ∈ (𝔼‘𝑁)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))) ↔ ∃𝑦 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))))
233231, 232bitri 263 . . . 4 (∃𝑟 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∃𝑦 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))) ↔ ∃𝑦 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))))
234233rexbii 3023 . . 3 (∃𝑥 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∃𝑦 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))) ↔ ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))))
235225, 226, 2343bitri 285 . 2 (∃𝑟 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))) ↔ ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))))
236220, 235sylib 207 1 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0) ∧ ∀𝑖 ∈ (1...𝑁)(((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑇𝑖))) = (((1 − 𝑄) · (𝐵𝑖)) + (𝑄 · (𝐶𝑖)))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  cmpt 4643  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  cmin 10145  -cneg 10146   / cdiv 10563  cn 10897  [,]cicc 12049  ...cfz 12197  𝔼cee 25568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-icc 12053  df-ee 25571
This theorem is referenced by:  axeuclid  25643
  Copyright terms: Public domain W3C validator