MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eleenn Structured version   Visualization version   GIF version

Theorem eleenn 25576
Description: If 𝐴 is in (𝔼‘𝑁), then 𝑁 is a natural. (Contributed by Scott Fenton, 1-Jul-2013.)
Assertion
Ref Expression
eleenn (𝐴 ∈ (𝔼‘𝑁) → 𝑁 ∈ ℕ)

Proof of Theorem eleenn
StepHypRef Expression
1 n0i 3879 . 2 (𝐴 ∈ (𝔼‘𝑁) → ¬ (𝔼‘𝑁) = ∅)
2 ovex 6577 . . . . 5 (ℝ ↑𝑚 (1...𝑛)) ∈ V
3 df-ee 25571 . . . . 5 𝔼 = (𝑛 ∈ ℕ ↦ (ℝ ↑𝑚 (1...𝑛)))
42, 3dmmpti 5936 . . . 4 dom 𝔼 = ℕ
54eleq2i 2680 . . 3 (𝑁 ∈ dom 𝔼 ↔ 𝑁 ∈ ℕ)
6 ndmfv 6128 . . 3 𝑁 ∈ dom 𝔼 → (𝔼‘𝑁) = ∅)
75, 6sylnbir 320 . 2 𝑁 ∈ ℕ → (𝔼‘𝑁) = ∅)
81, 7nsyl2 141 1 (𝐴 ∈ (𝔼‘𝑁) → 𝑁 ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  c0 3874  dom cdm 5038  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  cr 9814  1c1 9816  cn 10897  ...cfz 12197  𝔼cee 25568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fn 5807  df-fv 5812  df-ov 6552  df-ee 25571
This theorem is referenced by:  eleei  25577  eedimeq  25578  brbtwn  25579  brcgr  25580  eleesub  25591  eleesubd  25592  axsegconlem1  25597  axsegconlem8  25604  axeuclidlem  25642  brsegle  31385
  Copyright terms: Public domain W3C validator