Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  axeuclid Structured version   Visualization version   GIF version

Theorem axeuclid 25643
 Description: Euclid's axiom. Take an angle 𝐵𝐴𝐶 and a point 𝐷 between 𝐵 and 𝐶. Now, if you extend the segment 𝐴𝐷 to a point 𝑇, then 𝑇 lies between two points 𝑥 and 𝑦 that lie on the angle. Axiom A10 of [Schwabhauser] p. 13. (Contributed by Scott Fenton, 9-Sep-2013.)
Assertion
Ref Expression
axeuclid ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝐴, 𝑇⟩ ∧ 𝐷 Btwn ⟨𝐵, 𝐶⟩ ∧ 𝐴𝐷) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝑦⟩ ∧ 𝑇 Btwn ⟨𝑥, 𝑦⟩)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝑁,𝑦   𝑥,𝑇,𝑦

Proof of Theorem axeuclid
Dummy variables 𝑖 𝑝 𝑞 𝑟 𝑠 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl21 1132 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ ((𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷))) → 𝐴 ∈ (𝔼‘𝑁))
2 simpl22 1133 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ ((𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷))) → 𝐵 ∈ (𝔼‘𝑁))
31, 2jca 553 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ ((𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷))) → (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)))
4 simpl23 1134 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ ((𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷))) → 𝐶 ∈ (𝔼‘𝑁))
5 simpl3r 1110 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ ((𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷))) → 𝑇 ∈ (𝔼‘𝑁))
64, 5jca 553 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ ((𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷))) → (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁)))
7 simprll 798 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ ((𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷))) → 𝑝 ∈ (0[,]1))
8 simprlr 799 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ ((𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷))) → 𝑞 ∈ (0[,]1))
9 simp21 1087 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
109ad2antrr 758 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑝 = 0) → 𝐴 ∈ (𝔼‘𝑁))
11 fveecn 25582 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℂ)
1210, 11sylan 487 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑝 = 0) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℂ)
13 simp3r 1083 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) → 𝑇 ∈ (𝔼‘𝑁))
1413ad2antrr 758 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑝 = 0) → 𝑇 ∈ (𝔼‘𝑁))
15 fveecn 25582 . . . . . . . . . . . . . . . . . 18 ((𝑇 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝑇𝑖) ∈ ℂ)
1614, 15sylan 487 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑝 = 0) ∧ 𝑖 ∈ (1...𝑁)) → (𝑇𝑖) ∈ ℂ)
17 mulid2 9917 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑖) ∈ ℂ → (1 · (𝐴𝑖)) = (𝐴𝑖))
18 mul02 10093 . . . . . . . . . . . . . . . . . . 19 ((𝑇𝑖) ∈ ℂ → (0 · (𝑇𝑖)) = 0)
1917, 18oveqan12d 6568 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ) → ((1 · (𝐴𝑖)) + (0 · (𝑇𝑖))) = ((𝐴𝑖) + 0))
20 addid1 10095 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑖) ∈ ℂ → ((𝐴𝑖) + 0) = (𝐴𝑖))
2120adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ) → ((𝐴𝑖) + 0) = (𝐴𝑖))
2219, 21eqtrd 2644 . . . . . . . . . . . . . . . . 17 (((𝐴𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ) → ((1 · (𝐴𝑖)) + (0 · (𝑇𝑖))) = (𝐴𝑖))
2312, 16, 22syl2anc 691 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑝 = 0) ∧ 𝑖 ∈ (1...𝑁)) → ((1 · (𝐴𝑖)) + (0 · (𝑇𝑖))) = (𝐴𝑖))
24 oveq2 6557 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = 0 → (1 − 𝑝) = (1 − 0))
25 1m0e1 11008 . . . . . . . . . . . . . . . . . . . . 21 (1 − 0) = 1
2624, 25syl6eq 2660 . . . . . . . . . . . . . . . . . . . 20 (𝑝 = 0 → (1 − 𝑝) = 1)
2726oveq1d 6564 . . . . . . . . . . . . . . . . . . 19 (𝑝 = 0 → ((1 − 𝑝) · (𝐴𝑖)) = (1 · (𝐴𝑖)))
28 oveq1 6556 . . . . . . . . . . . . . . . . . . 19 (𝑝 = 0 → (𝑝 · (𝑇𝑖)) = (0 · (𝑇𝑖)))
2927, 28oveq12d 6567 . . . . . . . . . . . . . . . . . 18 (𝑝 = 0 → (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) = ((1 · (𝐴𝑖)) + (0 · (𝑇𝑖))))
3029eqeq1d 2612 . . . . . . . . . . . . . . . . 17 (𝑝 = 0 → ((((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) = (𝐴𝑖) ↔ ((1 · (𝐴𝑖)) + (0 · (𝑇𝑖))) = (𝐴𝑖)))
3130ad2antlr 759 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑝 = 0) ∧ 𝑖 ∈ (1...𝑁)) → ((((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) = (𝐴𝑖) ↔ ((1 · (𝐴𝑖)) + (0 · (𝑇𝑖))) = (𝐴𝑖)))
3223, 31mpbird 246 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑝 = 0) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) = (𝐴𝑖))
3332eqeq2d 2620 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑝 = 0) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ↔ (𝐷𝑖) = (𝐴𝑖)))
34 eqcom 2617 . . . . . . . . . . . . . 14 ((𝐷𝑖) = (𝐴𝑖) ↔ (𝐴𝑖) = (𝐷𝑖))
3533, 34syl6bb 275 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑝 = 0) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ↔ (𝐴𝑖) = (𝐷𝑖)))
3635biimpd 218 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑝 = 0) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) → (𝐴𝑖) = (𝐷𝑖)))
3736adantrd 483 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑝 = 0) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) → (𝐴𝑖) = (𝐷𝑖)))
3837ralimdva 2945 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑝 = 0) → (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) → ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐷𝑖)))
3938impancom 455 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ ∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖))))) → (𝑝 = 0 → ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐷𝑖)))
409ad2antrr 758 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ ∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖))))) → 𝐴 ∈ (𝔼‘𝑁))
41 simp3l 1082 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) → 𝐷 ∈ (𝔼‘𝑁))
4241ad2antrr 758 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ ∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖))))) → 𝐷 ∈ (𝔼‘𝑁))
43 eqeefv 25583 . . . . . . . . . 10 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐷 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐷𝑖)))
4440, 42, 43syl2anc 691 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ ∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖))))) → (𝐴 = 𝐷 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐷𝑖)))
4539, 44sylibrd 248 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ ∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖))))) → (𝑝 = 0 → 𝐴 = 𝐷))
4645necon3d 2803 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ ∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖))))) → (𝐴𝐷𝑝 ≠ 0))
4746impr 647 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷)) → 𝑝 ≠ 0)
4847anasss 677 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ ((𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷))) → 𝑝 ≠ 0)
49 eqtr2 2630 . . . . . . . 8 (((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) → (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖))))
5049ralimi 2936 . . . . . . 7 (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) → ∀𝑖 ∈ (1...𝑁)(((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖))))
5150adantr 480 . . . . . 6 ((∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷) → ∀𝑖 ∈ (1...𝑁)(((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖))))
5251ad2antll 761 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ ((𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷))) → ∀𝑖 ∈ (1...𝑁)(((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖))))
53 axeuclidlem 25642 . . . . 5 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1) ∧ 𝑝 ≠ 0) ∧ ∀𝑖 ∈ (1...𝑁)(((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))))
543, 6, 7, 8, 48, 52, 53syl231anc 1338 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ ((𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))))
5554exp32 629 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) → ((𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) → ((∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))))))
5655rexlimdvv 3019 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) → (∃𝑝 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖))))))
57 brbtwn 25579 . . . . 5 ((𝐷 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁)) → (𝐷 Btwn ⟨𝐴, 𝑇⟩ ↔ ∃𝑝 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖)))))
5841, 9, 13, 57syl3anc 1318 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) → (𝐷 Btwn ⟨𝐴, 𝑇⟩ ↔ ∃𝑝 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖)))))
59 simp22 1088 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
60 simp23 1089 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
61 brbtwn 25579 . . . . 5 ((𝐷 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐷 Btwn ⟨𝐵, 𝐶⟩ ↔ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))))
6241, 59, 60, 61syl3anc 1318 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) → (𝐷 Btwn ⟨𝐵, 𝐶⟩ ↔ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))))
6358, 623anbi12d 1392 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝐴, 𝑇⟩ ∧ 𝐷 Btwn ⟨𝐵, 𝐶⟩ ∧ 𝐴𝐷) ↔ (∃𝑝 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖))) ∧ 𝐴𝐷)))
64 r19.26 3046 . . . . . . 7 (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ↔ (∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))))
65642rexbii 3024 . . . . . 6 (∃𝑝 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ↔ ∃𝑝 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))))
66 reeanv 3086 . . . . . 6 (∃𝑝 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ↔ (∃𝑝 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))))
6765, 66bitri 263 . . . . 5 (∃𝑝 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ↔ (∃𝑝 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))))
6867anbi1i 727 . . . 4 ((∃𝑝 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷) ↔ ((∃𝑝 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷))
69 r19.41vv 3072 . . . 4 (∃𝑝 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷) ↔ (∃𝑝 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷))
70 df-3an 1033 . . . 4 ((∃𝑝 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖))) ∧ 𝐴𝐷) ↔ ((∃𝑝 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷))
7168, 69, 703bitr4i 291 . . 3 (∃𝑝 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷) ↔ (∃𝑝 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖))) ∧ 𝐴𝐷))
7263, 71syl6bbr 277 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝐴, 𝑇⟩ ∧ 𝐷 Btwn ⟨𝐵, 𝐶⟩ ∧ 𝐴𝐷) ↔ ∃𝑝 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷)))
73 simpl22 1133 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
74 simpl21 1132 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
75 simprl 790 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → 𝑥 ∈ (𝔼‘𝑁))
76 brbtwn 25579 . . . . . 6 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝐵 Btwn ⟨𝐴, 𝑥⟩ ↔ ∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖)))))
7773, 74, 75, 76syl3anc 1318 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐴, 𝑥⟩ ↔ ∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖)))))
78 simpl23 1134 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
79 simprr 792 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → 𝑦 ∈ (𝔼‘𝑁))
80 brbtwn 25579 . . . . . 6 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (𝐶 Btwn ⟨𝐴, 𝑦⟩ ↔ ∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖)))))
8178, 74, 79, 80syl3anc 1318 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → (𝐶 Btwn ⟨𝐴, 𝑦⟩ ↔ ∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖)))))
82 simpl3r 1110 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → 𝑇 ∈ (𝔼‘𝑁))
83 brbtwn 25579 . . . . . 6 ((𝑇 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (𝑇 Btwn ⟨𝑥, 𝑦⟩ ↔ ∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))))
8482, 75, 79, 83syl3anc 1318 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → (𝑇 Btwn ⟨𝑥, 𝑦⟩ ↔ ∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))))
8577, 81, 843anbi123d 1391 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝑦⟩ ∧ 𝑇 Btwn ⟨𝑥, 𝑦⟩) ↔ (∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ ∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ ∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖))))))
86 r19.26-3 3048 . . . . . . 7 (∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))) ↔ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))))
8786rexbii 3023 . . . . . 6 (∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))) ↔ ∃𝑢 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))))
88872rexbii 3024 . . . . 5 (∃𝑟 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))) ↔ ∃𝑟 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))))
89 3reeanv 3087 . . . . 5 (∃𝑟 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))) ↔ (∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ ∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ ∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))))
9088, 89bitri 263 . . . 4 (∃𝑟 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))) ↔ (∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ ∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ ∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))))
9185, 90syl6bbr 277 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝑦⟩ ∧ 𝑇 Btwn ⟨𝑥, 𝑦⟩) ↔ ∃𝑟 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖))))))
92912rexbidva 3038 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) → (∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝑦⟩ ∧ 𝑇 Btwn ⟨𝑥, 𝑦⟩) ↔ ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖))))))
9356, 72, 923imtr4d 282 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝐴, 𝑇⟩ ∧ 𝐷 Btwn ⟨𝐵, 𝐶⟩ ∧ 𝐴𝐷) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝑦⟩ ∧ 𝑇 Btwn ⟨𝑥, 𝑦⟩)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ∃wrex 2897  ⟨cop 4131   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   − cmin 10145  ℕcn 10897  [,]cicc 12049  ...cfz 12197  𝔼cee 25568   Btwn cbtwn 25569 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-z 11255  df-uz 11564  df-icc 12053  df-fz 12198  df-ee 25571  df-btwn 25572 This theorem is referenced by:  eengtrkge  25666
 Copyright terms: Public domain W3C validator