MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axeuclid Structured version   Unicode version

Theorem axeuclid 24039
Description: Euclid's axiom. Take an angle  B A C and a point  D between  B and  C. Now, if you extend the segment  A D to a point  T, then  T lies between two points  x and  y that lie on the angle. Axiom A10 of [Schwabhauser] p. 13. (Contributed by Scott Fenton, 9-Sep-2013.)
Assertion
Ref Expression
axeuclid  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  -> 
( ( D  Btwn  <. A ,  T >.  /\  D  Btwn  <. B ,  C >.  /\  A  =/=  D )  ->  E. x  e.  ( EE `  N
) E. y  e.  ( EE `  N
) ( B  Btwn  <. A ,  x >.  /\  C  Btwn  <. A , 
y >.  /\  T  Btwn  <.
x ,  y >.
) ) )
Distinct variable groups:    x, A, y    x, B, y    x, C, y    x, D, y   
x, N, y    x, T, y

Proof of Theorem axeuclid
Dummy variables  i  p  q  r  s  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl21 1074 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( ( p  e.  ( 0 [,] 1
)  /\  q  e.  ( 0 [,] 1
) )  /\  ( A. i  e.  (
1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) )  /\  A  =/=  D ) ) )  ->  A  e.  ( EE `  N ) )
2 simpl22 1075 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( ( p  e.  ( 0 [,] 1
)  /\  q  e.  ( 0 [,] 1
) )  /\  ( A. i  e.  (
1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) )  /\  A  =/=  D ) ) )  ->  B  e.  ( EE `  N ) )
31, 2jca 532 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( ( p  e.  ( 0 [,] 1
)  /\  q  e.  ( 0 [,] 1
) )  /\  ( A. i  e.  (
1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) )  /\  A  =/=  D ) ) )  ->  ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )
4 simpl23 1076 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( ( p  e.  ( 0 [,] 1
)  /\  q  e.  ( 0 [,] 1
) )  /\  ( A. i  e.  (
1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) )  /\  A  =/=  D ) ) )  ->  C  e.  ( EE `  N ) )
5 simpl3r 1052 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( ( p  e.  ( 0 [,] 1
)  /\  q  e.  ( 0 [,] 1
) )  /\  ( A. i  e.  (
1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) )  /\  A  =/=  D ) ) )  ->  T  e.  ( EE `  N ) )
64, 5jca 532 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( ( p  e.  ( 0 [,] 1
)  /\  q  e.  ( 0 [,] 1
) )  /\  ( A. i  e.  (
1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) )  /\  A  =/=  D ) ) )  ->  ( C  e.  ( EE `  N
)  /\  T  e.  ( EE `  N ) ) )
7 simprll 761 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( ( p  e.  ( 0 [,] 1
)  /\  q  e.  ( 0 [,] 1
) )  /\  ( A. i  e.  (
1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) )  /\  A  =/=  D ) ) )  ->  p  e.  ( 0 [,] 1
) )
8 simprlr 762 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( ( p  e.  ( 0 [,] 1
)  /\  q  e.  ( 0 [,] 1
) )  /\  ( A. i  e.  (
1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) )  /\  A  =/=  D ) ) )  ->  q  e.  ( 0 [,] 1
) )
9 simp21 1029 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  ->  A  e.  ( EE `  N ) )
109ad2antrr 725 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( p  e.  (
0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  p  =  0 )  ->  A  e.  ( EE `  N ) )
11 fveecn 23978 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  ( EE
`  N )  /\  i  e.  ( 1 ... N ) )  ->  ( A `  i )  e.  CC )
1210, 11sylan 471 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( p  e.  (
0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  p  =  0 )  /\  i  e.  ( 1 ... N ) )  ->  ( A `  i )  e.  CC )
13 simp3r 1025 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  ->  T  e.  ( EE `  N ) )
1413ad2antrr 725 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( p  e.  (
0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  p  =  0 )  ->  T  e.  ( EE `  N ) )
15 fveecn 23978 . . . . . . . . . . . . . . . . . 18  |-  ( ( T  e.  ( EE
`  N )  /\  i  e.  ( 1 ... N ) )  ->  ( T `  i )  e.  CC )
1614, 15sylan 471 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( p  e.  (
0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  p  =  0 )  /\  i  e.  ( 1 ... N ) )  ->  ( T `  i )  e.  CC )
17 mulid2 9595 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A `  i )  e.  CC  ->  (
1  x.  ( A `
 i ) )  =  ( A `  i ) )
18 mul02 9758 . . . . . . . . . . . . . . . . . . 19  |-  ( ( T `  i )  e.  CC  ->  (
0  x.  ( T `
 i ) )  =  0 )
1917, 18oveqan12d 6304 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A `  i
)  e.  CC  /\  ( T `  i )  e.  CC )  -> 
( ( 1  x.  ( A `  i
) )  +  ( 0  x.  ( T `
 i ) ) )  =  ( ( A `  i )  +  0 ) )
20 addid1 9760 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A `  i )  e.  CC  ->  (
( A `  i
)  +  0 )  =  ( A `  i ) )
2120adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A `  i
)  e.  CC  /\  ( T `  i )  e.  CC )  -> 
( ( A `  i )  +  0 )  =  ( A `
 i ) )
2219, 21eqtrd 2508 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A `  i
)  e.  CC  /\  ( T `  i )  e.  CC )  -> 
( ( 1  x.  ( A `  i
) )  +  ( 0  x.  ( T `
 i ) ) )  =  ( A `
 i ) )
2312, 16, 22syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( p  e.  (
0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  p  =  0 )  /\  i  e.  ( 1 ... N ) )  ->  ( ( 1  x.  ( A `  i ) )  +  ( 0  x.  ( T `  i )
) )  =  ( A `  i ) )
24 oveq2 6293 . . . . . . . . . . . . . . . . . . . . 21  |-  ( p  =  0  ->  (
1  -  p )  =  ( 1  -  0 ) )
25 1m0e1 10647 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 1  -  0 )  =  1
2624, 25syl6eq 2524 . . . . . . . . . . . . . . . . . . . 20  |-  ( p  =  0  ->  (
1  -  p )  =  1 )
2726oveq1d 6300 . . . . . . . . . . . . . . . . . . 19  |-  ( p  =  0  ->  (
( 1  -  p
)  x.  ( A `
 i ) )  =  ( 1  x.  ( A `  i
) ) )
28 oveq1 6292 . . . . . . . . . . . . . . . . . . 19  |-  ( p  =  0  ->  (
p  x.  ( T `
 i ) )  =  ( 0  x.  ( T `  i
) ) )
2927, 28oveq12d 6303 . . . . . . . . . . . . . . . . . 18  |-  ( p  =  0  ->  (
( ( 1  -  p )  x.  ( A `  i )
)  +  ( p  x.  ( T `  i ) ) )  =  ( ( 1  x.  ( A `  i ) )  +  ( 0  x.  ( T `  i )
) ) )
3029eqeq1d 2469 . . . . . . . . . . . . . . . . 17  |-  ( p  =  0  ->  (
( ( ( 1  -  p )  x.  ( A `  i
) )  +  ( p  x.  ( T `
 i ) ) )  =  ( A `
 i )  <->  ( (
1  x.  ( A `
 i ) )  +  ( 0  x.  ( T `  i
) ) )  =  ( A `  i
) ) )
3130ad2antlr 726 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( p  e.  (
0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  p  =  0 )  /\  i  e.  ( 1 ... N ) )  ->  ( ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  =  ( A `  i
)  <->  ( ( 1  x.  ( A `  i ) )  +  ( 0  x.  ( T `  i )
) )  =  ( A `  i ) ) )
3223, 31mpbird 232 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( p  e.  (
0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  p  =  0 )  /\  i  e.  ( 1 ... N ) )  ->  ( ( ( 1  -  p )  x.  ( A `  i ) )  +  ( p  x.  ( T `  i )
) )  =  ( A `  i ) )
3332eqeq2d 2481 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( p  e.  (
0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  p  =  0 )  /\  i  e.  ( 1 ... N ) )  ->  ( ( D `
 i )  =  ( ( ( 1  -  p )  x.  ( A `  i
) )  +  ( p  x.  ( T `
 i ) ) )  <->  ( D `  i )  =  ( A `  i ) ) )
34 eqcom 2476 . . . . . . . . . . . . . 14  |-  ( ( D `  i )  =  ( A `  i )  <->  ( A `  i )  =  ( D `  i ) )
3533, 34syl6bb 261 . . . . . . . . . . . . 13  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( p  e.  (
0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  p  =  0 )  /\  i  e.  ( 1 ... N ) )  ->  ( ( D `
 i )  =  ( ( ( 1  -  p )  x.  ( A `  i
) )  +  ( p  x.  ( T `
 i ) ) )  <->  ( A `  i )  =  ( D `  i ) ) )
3635biimpd 207 . . . . . . . . . . . 12  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( p  e.  (
0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  p  =  0 )  /\  i  e.  ( 1 ... N ) )  ->  ( ( D `
 i )  =  ( ( ( 1  -  p )  x.  ( A `  i
) )  +  ( p  x.  ( T `
 i ) ) )  ->  ( A `  i )  =  ( D `  i ) ) )
3736adantrd 468 . . . . . . . . . . 11  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( p  e.  (
0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  p  =  0 )  /\  i  e.  ( 1 ... N ) )  ->  ( ( ( D `  i )  =  ( ( ( 1  -  p )  x.  ( A `  i ) )  +  ( p  x.  ( T `  i )
) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) )  -> 
( A `  i
)  =  ( D `
 i ) ) )
3837ralimdva 2872 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( p  e.  (
0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  p  =  0 )  -> 
( A. i  e.  ( 1 ... N
) ( ( D `
 i )  =  ( ( ( 1  -  p )  x.  ( A `  i
) )  +  ( p  x.  ( T `
 i ) ) )  /\  ( D `
 i )  =  ( ( ( 1  -  q )  x.  ( B `  i
) )  +  ( q  x.  ( C `
 i ) ) ) )  ->  A. i  e.  ( 1 ... N
) ( A `  i )  =  ( D `  i ) ) )
3938impancom 440 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( p  e.  (
0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  A. i  e.  ( 1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) ) )  ->  ( p  =  0  ->  A. i  e.  ( 1 ... N
) ( A `  i )  =  ( D `  i ) ) )
409ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( p  e.  (
0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  A. i  e.  ( 1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) ) )  ->  A  e.  ( EE `  N ) )
41 simp3l 1024 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  ->  D  e.  ( EE `  N ) )
4241ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( p  e.  (
0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  A. i  e.  ( 1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) ) )  ->  D  e.  ( EE `  N ) )
43 eqeefv 23979 . . . . . . . . . 10  |-  ( ( A  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  -> 
( A  =  D  <->  A. i  e.  (
1 ... N ) ( A `  i )  =  ( D `  i ) ) )
4440, 42, 43syl2anc 661 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( p  e.  (
0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  A. i  e.  ( 1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) ) )  ->  ( A  =  D  <->  A. i  e.  ( 1 ... N ) ( A `  i
)  =  ( D `
 i ) ) )
4539, 44sylibrd 234 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( p  e.  (
0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  A. i  e.  ( 1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) ) )  ->  ( p  =  0  ->  A  =  D ) )
4645necon3d 2691 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( p  e.  (
0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  A. i  e.  ( 1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) ) )  ->  ( A  =/= 
D  ->  p  =/=  0 ) )
4746impr 619 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( p  e.  (
0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  ( A. i  e.  (
1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) )  /\  A  =/=  D ) )  ->  p  =/=  0
)
4847anasss 647 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( ( p  e.  ( 0 [,] 1
)  /\  q  e.  ( 0 [,] 1
) )  /\  ( A. i  e.  (
1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) )  /\  A  =/=  D ) ) )  ->  p  =/=  0 )
49 eqtr2 2494 . . . . . . . 8  |-  ( ( ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) )  -> 
( ( ( 1  -  p )  x.  ( A `  i
) )  +  ( p  x.  ( T `
 i ) ) )  =  ( ( ( 1  -  q
)  x.  ( B `
 i ) )  +  ( q  x.  ( C `  i
) ) ) )
5049ralimi 2857 . . . . . . 7  |-  ( A. i  e.  ( 1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) )  ->  A. i  e.  (
1 ... N ) ( ( ( 1  -  p )  x.  ( A `  i )
)  +  ( p  x.  ( T `  i ) ) )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) )
5150adantr 465 . . . . . 6  |-  ( ( A. i  e.  ( 1 ... N ) ( ( D `  i )  =  ( ( ( 1  -  p )  x.  ( A `  i )
)  +  ( p  x.  ( T `  i ) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i )
)  +  ( q  x.  ( C `  i ) ) ) )  /\  A  =/= 
D )  ->  A. i  e.  ( 1 ... N
) ( ( ( 1  -  p )  x.  ( A `  i ) )  +  ( p  x.  ( T `  i )
) )  =  ( ( ( 1  -  q )  x.  ( B `  i )
)  +  ( q  x.  ( C `  i ) ) ) )
5251ad2antll 728 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( ( p  e.  ( 0 [,] 1
)  /\  q  e.  ( 0 [,] 1
) )  /\  ( A. i  e.  (
1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) )  /\  A  =/=  D ) ) )  ->  A. i  e.  ( 1 ... N
) ( ( ( 1  -  p )  x.  ( A `  i ) )  +  ( p  x.  ( T `  i )
) )  =  ( ( ( 1  -  q )  x.  ( B `  i )
)  +  ( q  x.  ( C `  i ) ) ) )
53 axeuclidlem 24038 . . . . 5  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( p  e.  (
0 [,] 1 )  /\  q  e.  ( 0 [,] 1 )  /\  p  =/=  0
)  /\  A. i  e.  ( 1 ... N
) ( ( ( 1  -  p )  x.  ( A `  i ) )  +  ( p  x.  ( T `  i )
) )  =  ( ( ( 1  -  q )  x.  ( B `  i )
)  +  ( q  x.  ( C `  i ) ) ) )  ->  E. x  e.  ( EE `  N
) E. y  e.  ( EE `  N
) E. r  e.  ( 0 [,] 1
) E. s  e.  ( 0 [,] 1
) E. u  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( ( B `
 i )  =  ( ( ( 1  -  r )  x.  ( A `  i
) )  +  ( r  x.  ( x `
 i ) ) )  /\  ( C `
 i )  =  ( ( ( 1  -  s )  x.  ( A `  i
) )  +  ( s  x.  ( y `
 i ) ) )  /\  ( T `
 i )  =  ( ( ( 1  -  u )  x.  ( x `  i
) )  +  ( u  x.  ( y `
 i ) ) ) ) )
543, 6, 7, 8, 48, 52, 53syl231anc 1248 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( ( p  e.  ( 0 [,] 1
)  /\  q  e.  ( 0 [,] 1
) )  /\  ( A. i  e.  (
1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) )  /\  A  =/=  D ) ) )  ->  E. x  e.  ( EE `  N
) E. y  e.  ( EE `  N
) E. r  e.  ( 0 [,] 1
) E. s  e.  ( 0 [,] 1
) E. u  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( ( B `
 i )  =  ( ( ( 1  -  r )  x.  ( A `  i
) )  +  ( r  x.  ( x `
 i ) ) )  /\  ( C `
 i )  =  ( ( ( 1  -  s )  x.  ( A `  i
) )  +  ( s  x.  ( y `
 i ) ) )  /\  ( T `
 i )  =  ( ( ( 1  -  u )  x.  ( x `  i
) )  +  ( u  x.  ( y `
 i ) ) ) ) )
5554exp32 605 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  -> 
( ( p  e.  ( 0 [,] 1
)  /\  q  e.  ( 0 [,] 1
) )  ->  (
( A. i  e.  ( 1 ... N
) ( ( D `
 i )  =  ( ( ( 1  -  p )  x.  ( A `  i
) )  +  ( p  x.  ( T `
 i ) ) )  /\  ( D `
 i )  =  ( ( ( 1  -  q )  x.  ( B `  i
) )  +  ( q  x.  ( C `
 i ) ) ) )  /\  A  =/=  D )  ->  E. x  e.  ( EE `  N
) E. y  e.  ( EE `  N
) E. r  e.  ( 0 [,] 1
) E. s  e.  ( 0 [,] 1
) E. u  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( ( B `
 i )  =  ( ( ( 1  -  r )  x.  ( A `  i
) )  +  ( r  x.  ( x `
 i ) ) )  /\  ( C `
 i )  =  ( ( ( 1  -  s )  x.  ( A `  i
) )  +  ( s  x.  ( y `
 i ) ) )  /\  ( T `
 i )  =  ( ( ( 1  -  u )  x.  ( x `  i
) )  +  ( u  x.  ( y `
 i ) ) ) ) ) ) )
5655rexlimdvv 2961 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  -> 
( E. p  e.  ( 0 [,] 1
) E. q  e.  ( 0 [,] 1
) ( A. i  e.  ( 1 ... N
) ( ( D `
 i )  =  ( ( ( 1  -  p )  x.  ( A `  i
) )  +  ( p  x.  ( T `
 i ) ) )  /\  ( D `
 i )  =  ( ( ( 1  -  q )  x.  ( B `  i
) )  +  ( q  x.  ( C `
 i ) ) ) )  /\  A  =/=  D )  ->  E. x  e.  ( EE `  N
) E. y  e.  ( EE `  N
) E. r  e.  ( 0 [,] 1
) E. s  e.  ( 0 [,] 1
) E. u  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( ( B `
 i )  =  ( ( ( 1  -  r )  x.  ( A `  i
) )  +  ( r  x.  ( x `
 i ) ) )  /\  ( C `
 i )  =  ( ( ( 1  -  s )  x.  ( A `  i
) )  +  ( s  x.  ( y `
 i ) ) )  /\  ( T `
 i )  =  ( ( ( 1  -  u )  x.  ( x `  i
) )  +  ( u  x.  ( y `
 i ) ) ) ) ) )
57 brbtwn 23975 . . . . 5  |-  ( ( D  e.  ( EE
`  N )  /\  A  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) )  ->  ( D  Btwn  <. A ,  T >.  <->  E. p  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... N ) ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) ) ) )
5841, 9, 13, 57syl3anc 1228 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  -> 
( D  Btwn  <. A ,  T >. 
<->  E. p  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) ) ) )
59 simp22 1030 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  ->  B  e.  ( EE `  N ) )
60 simp23 1031 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  ->  C  e.  ( EE `  N ) )
61 brbtwn 23975 . . . . 5  |-  ( ( D  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  ->  ( D  Btwn  <. B ,  C >.  <->  E. q  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... N ) ( D `  i
)  =  ( ( ( 1  -  q
)  x.  ( B `
 i ) )  +  ( q  x.  ( C `  i
) ) ) ) )
6241, 59, 60, 61syl3anc 1228 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  -> 
( D  Btwn  <. B ,  C >. 
<->  E. q  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( D `  i
)  =  ( ( ( 1  -  q
)  x.  ( B `
 i ) )  +  ( q  x.  ( C `  i
) ) ) ) )
6358, 623anbi12d 1300 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  -> 
( ( D  Btwn  <. A ,  T >.  /\  D  Btwn  <. B ,  C >.  /\  A  =/=  D )  <->  ( E. p  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( D `  i )  =  ( ( ( 1  -  p )  x.  ( A `  i )
)  +  ( p  x.  ( T `  i ) ) )  /\  E. q  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i )
)  +  ( q  x.  ( C `  i ) ) )  /\  A  =/=  D
) ) )
64 r19.26 2989 . . . . . . 7  |-  ( A. i  e.  ( 1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) )  <->  ( A. i  e.  ( 1 ... N ) ( D `  i )  =  ( ( ( 1  -  p )  x.  ( A `  i ) )  +  ( p  x.  ( T `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) ) )
65642rexbii 2966 . . . . . 6  |-  ( E. p  e.  ( 0 [,] 1 ) E. q  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) )  <->  E. p  e.  ( 0 [,] 1
) E. q  e.  ( 0 [,] 1
) ( A. i  e.  ( 1 ... N
) ( D `  i )  =  ( ( ( 1  -  p )  x.  ( A `  i )
)  +  ( p  x.  ( T `  i ) ) )  /\  A. i  e.  ( 1 ... N
) ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i )
)  +  ( q  x.  ( C `  i ) ) ) ) )
66 reeanv 3029 . . . . . 6  |-  ( E. p  e.  ( 0 [,] 1 ) E. q  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N ) ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  A. i  e.  ( 1 ... N ) ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) )  <->  ( E. p  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( D `  i )  =  ( ( ( 1  -  p )  x.  ( A `  i ) )  +  ( p  x.  ( T `  i )
) )  /\  E. q  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) ) )
6765, 66bitri 249 . . . . 5  |-  ( E. p  e.  ( 0 [,] 1 ) E. q  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) )  <->  ( E. p  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( D `  i )  =  ( ( ( 1  -  p )  x.  ( A `  i ) )  +  ( p  x.  ( T `  i )
) )  /\  E. q  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) ) )
6867anbi1i 695 . . . 4  |-  ( ( E. p  e.  ( 0 [,] 1 ) E. q  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( ( D `  i )  =  ( ( ( 1  -  p )  x.  ( A `  i )
)  +  ( p  x.  ( T `  i ) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i )
)  +  ( q  x.  ( C `  i ) ) ) )  /\  A  =/= 
D )  <->  ( ( E. p  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... N ) ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  E. q  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) )  /\  A  =/=  D ) )
69 r19.41v 3014 . . . . . 6  |-  ( E. q  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N ) ( ( D `  i )  =  ( ( ( 1  -  p )  x.  ( A `  i )
)  +  ( p  x.  ( T `  i ) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i )
)  +  ( q  x.  ( C `  i ) ) ) )  /\  A  =/= 
D )  <->  ( E. q  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) )  /\  A  =/=  D ) )
7069rexbii 2965 . . . . 5  |-  ( E. p  e.  ( 0 [,] 1 ) E. q  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N ) ( ( D `  i )  =  ( ( ( 1  -  p )  x.  ( A `  i )
)  +  ( p  x.  ( T `  i ) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i )
)  +  ( q  x.  ( C `  i ) ) ) )  /\  A  =/= 
D )  <->  E. p  e.  ( 0 [,] 1
) ( E. q  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( ( D `
 i )  =  ( ( ( 1  -  p )  x.  ( A `  i
) )  +  ( p  x.  ( T `
 i ) ) )  /\  ( D `
 i )  =  ( ( ( 1  -  q )  x.  ( B `  i
) )  +  ( q  x.  ( C `
 i ) ) ) )  /\  A  =/=  D ) )
71 r19.41v 3014 . . . . 5  |-  ( E. p  e.  ( 0 [,] 1 ) ( E. q  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( ( D `  i )  =  ( ( ( 1  -  p )  x.  ( A `  i )
)  +  ( p  x.  ( T `  i ) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i )
)  +  ( q  x.  ( C `  i ) ) ) )  /\  A  =/= 
D )  <->  ( E. p  e.  ( 0 [,] 1 ) E. q  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) )  /\  A  =/=  D ) )
7270, 71bitri 249 . . . 4  |-  ( E. p  e.  ( 0 [,] 1 ) E. q  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N ) ( ( D `  i )  =  ( ( ( 1  -  p )  x.  ( A `  i )
)  +  ( p  x.  ( T `  i ) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i )
)  +  ( q  x.  ( C `  i ) ) ) )  /\  A  =/= 
D )  <->  ( E. p  e.  ( 0 [,] 1 ) E. q  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) )  /\  A  =/=  D ) )
73 df-3an 975 . . . 4  |-  ( ( E. p  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  E. q  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) )  /\  A  =/=  D )  <->  ( ( E. p  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... N ) ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  E. q  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) )  /\  A  =/=  D ) )
7468, 72, 733bitr4i 277 . . 3  |-  ( E. p  e.  ( 0 [,] 1 ) E. q  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N ) ( ( D `  i )  =  ( ( ( 1  -  p )  x.  ( A `  i )
)  +  ( p  x.  ( T `  i ) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i )
)  +  ( q  x.  ( C `  i ) ) ) )  /\  A  =/= 
D )  <->  ( E. p  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( D `  i )  =  ( ( ( 1  -  p )  x.  ( A `  i ) )  +  ( p  x.  ( T `  i )
) )  /\  E. q  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) )  /\  A  =/=  D ) )
7563, 74syl6bbr 263 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  -> 
( ( D  Btwn  <. A ,  T >.  /\  D  Btwn  <. B ,  C >.  /\  A  =/=  D )  <->  E. p  e.  ( 0 [,] 1 ) E. q  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N
) ( ( D `
 i )  =  ( ( ( 1  -  p )  x.  ( A `  i
) )  +  ( p  x.  ( T `
 i ) ) )  /\  ( D `
 i )  =  ( ( ( 1  -  q )  x.  ( B `  i
) )  +  ( q  x.  ( C `
 i ) ) ) )  /\  A  =/=  D ) ) )
76 simpl22 1075 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( x  e.  ( EE `  N )  /\  y  e.  ( EE `  N ) ) )  ->  B  e.  ( EE `  N ) )
77 simpl21 1074 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( x  e.  ( EE `  N )  /\  y  e.  ( EE `  N ) ) )  ->  A  e.  ( EE `  N ) )
78 simprl 755 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( x  e.  ( EE `  N )  /\  y  e.  ( EE `  N ) ) )  ->  x  e.  ( EE `  N ) )
79 brbtwn 23975 . . . . . 6  |-  ( ( B  e.  ( EE
`  N )  /\  A  e.  ( EE `  N )  /\  x  e.  ( EE `  N
) )  ->  ( B  Btwn  <. A ,  x >.  <->  E. r  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... N ) ( B `  i
)  =  ( ( ( 1  -  r
)  x.  ( A `
 i ) )  +  ( r  x.  ( x `  i
) ) ) ) )
8076, 77, 78, 79syl3anc 1228 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( x  e.  ( EE `  N )  /\  y  e.  ( EE `  N ) ) )  ->  ( B  Btwn  <. A ,  x >.  <->  E. r  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  r )  x.  ( A `  i ) )  +  ( r  x.  (
x `  i )
) ) ) )
81 simpl23 1076 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( x  e.  ( EE `  N )  /\  y  e.  ( EE `  N ) ) )  ->  C  e.  ( EE `  N ) )
82 simprr 756 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( x  e.  ( EE `  N )  /\  y  e.  ( EE `  N ) ) )  ->  y  e.  ( EE `  N ) )
83 brbtwn 23975 . . . . . 6  |-  ( ( C  e.  ( EE
`  N )  /\  A  e.  ( EE `  N )  /\  y  e.  ( EE `  N
) )  ->  ( C  Btwn  <. A ,  y
>. 
<->  E. s  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( C `  i
)  =  ( ( ( 1  -  s
)  x.  ( A `
 i ) )  +  ( s  x.  ( y `  i
) ) ) ) )
8481, 77, 82, 83syl3anc 1228 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( x  e.  ( EE `  N )  /\  y  e.  ( EE `  N ) ) )  ->  ( C  Btwn  <. A ,  y >.  <->  E. s  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( C `  i )  =  ( ( ( 1  -  s )  x.  ( A `  i ) )  +  ( s  x.  (
y `  i )
) ) ) )
85 simpl3r 1052 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( x  e.  ( EE `  N )  /\  y  e.  ( EE `  N ) ) )  ->  T  e.  ( EE `  N ) )
86 brbtwn 23975 . . . . . 6  |-  ( ( T  e.  ( EE
`  N )  /\  x  e.  ( EE `  N )  /\  y  e.  ( EE `  N
) )  ->  ( T  Btwn  <. x ,  y
>. 
<->  E. u  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( T `  i
)  =  ( ( ( 1  -  u
)  x.  ( x `
 i ) )  +  ( u  x.  ( y `  i
) ) ) ) )
8785, 78, 82, 86syl3anc 1228 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( x  e.  ( EE `  N )  /\  y  e.  ( EE `  N ) ) )  ->  ( T  Btwn  <.
x ,  y >.  <->  E. u  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( T `  i )  =  ( ( ( 1  -  u )  x.  ( x `  i ) )  +  ( u  x.  (
y `  i )
) ) ) )
8880, 84, 873anbi123d 1299 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( x  e.  ( EE `  N )  /\  y  e.  ( EE `  N ) ) )  ->  ( ( B 
Btwn  <. A ,  x >.  /\  C  Btwn  <. A , 
y >.  /\  T  Btwn  <.
x ,  y >.
)  <->  ( E. r  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  r )  x.  ( A `  i )
)  +  ( r  x.  ( x `  i ) ) )  /\  E. s  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( C `  i )  =  ( ( ( 1  -  s )  x.  ( A `  i )
)  +  ( s  x.  ( y `  i ) ) )  /\  E. u  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( T `  i )  =  ( ( ( 1  -  u )  x.  (
x `  i )
)  +  ( u  x.  ( y `  i ) ) ) ) ) )
89 r19.26-3 2991 . . . . . . 7  |-  ( A. i  e.  ( 1 ... N ) ( ( B `  i
)  =  ( ( ( 1  -  r
)  x.  ( A `
 i ) )  +  ( r  x.  ( x `  i
) ) )  /\  ( C `  i )  =  ( ( ( 1  -  s )  x.  ( A `  i ) )  +  ( s  x.  (
y `  i )
) )  /\  ( T `  i )  =  ( ( ( 1  -  u )  x.  ( x `  i ) )  +  ( u  x.  (
y `  i )
) ) )  <->  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  r )  x.  ( A `  i ) )  +  ( r  x.  (
x `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( C `  i )  =  ( ( ( 1  -  s )  x.  ( A `  i ) )  +  ( s  x.  (
y `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( T `  i )  =  ( ( ( 1  -  u )  x.  ( x `  i ) )  +  ( u  x.  (
y `  i )
) ) ) )
9089rexbii 2965 . . . . . 6  |-  ( E. u  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( ( B `  i
)  =  ( ( ( 1  -  r
)  x.  ( A `
 i ) )  +  ( r  x.  ( x `  i
) ) )  /\  ( C `  i )  =  ( ( ( 1  -  s )  x.  ( A `  i ) )  +  ( s  x.  (
y `  i )
) )  /\  ( T `  i )  =  ( ( ( 1  -  u )  x.  ( x `  i ) )  +  ( u  x.  (
y `  i )
) ) )  <->  E. u  e.  ( 0 [,] 1
) ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  r )  x.  ( A `  i )
)  +  ( r  x.  ( x `  i ) ) )  /\  A. i  e.  ( 1 ... N
) ( C `  i )  =  ( ( ( 1  -  s )  x.  ( A `  i )
)  +  ( s  x.  ( y `  i ) ) )  /\  A. i  e.  ( 1 ... N
) ( T `  i )  =  ( ( ( 1  -  u )  x.  (
x `  i )
)  +  ( u  x.  ( y `  i ) ) ) ) )
91902rexbii 2966 . . . . 5  |-  ( E. r  e.  ( 0 [,] 1 ) E. s  e.  ( 0 [,] 1 ) E. u  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( ( B `  i
)  =  ( ( ( 1  -  r
)  x.  ( A `
 i ) )  +  ( r  x.  ( x `  i
) ) )  /\  ( C `  i )  =  ( ( ( 1  -  s )  x.  ( A `  i ) )  +  ( s  x.  (
y `  i )
) )  /\  ( T `  i )  =  ( ( ( 1  -  u )  x.  ( x `  i ) )  +  ( u  x.  (
y `  i )
) ) )  <->  E. r  e.  ( 0 [,] 1
) E. s  e.  ( 0 [,] 1
) E. u  e.  ( 0 [,] 1
) ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  r )  x.  ( A `  i )
)  +  ( r  x.  ( x `  i ) ) )  /\  A. i  e.  ( 1 ... N
) ( C `  i )  =  ( ( ( 1  -  s )  x.  ( A `  i )
)  +  ( s  x.  ( y `  i ) ) )  /\  A. i  e.  ( 1 ... N
) ( T `  i )  =  ( ( ( 1  -  u )  x.  (
x `  i )
)  +  ( u  x.  ( y `  i ) ) ) ) )
92 3reeanv 3030 . . . . 5  |-  ( E. r  e.  ( 0 [,] 1 ) E. s  e.  ( 0 [,] 1 ) E. u  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N ) ( B `  i
)  =  ( ( ( 1  -  r
)  x.  ( A `
 i ) )  +  ( r  x.  ( x `  i
) ) )  /\  A. i  e.  ( 1 ... N ) ( C `  i )  =  ( ( ( 1  -  s )  x.  ( A `  i ) )  +  ( s  x.  (
y `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( T `  i )  =  ( ( ( 1  -  u )  x.  ( x `  i ) )  +  ( u  x.  (
y `  i )
) ) )  <->  ( E. r  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  r )  x.  ( A `  i ) )  +  ( r  x.  (
x `  i )
) )  /\  E. s  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( C `  i )  =  ( ( ( 1  -  s )  x.  ( A `  i ) )  +  ( s  x.  (
y `  i )
) )  /\  E. u  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( T `  i )  =  ( ( ( 1  -  u )  x.  ( x `  i ) )  +  ( u  x.  (
y `  i )
) ) ) )
9391, 92bitri 249 . . . 4  |-  ( E. r  e.  ( 0 [,] 1 ) E. s  e.  ( 0 [,] 1 ) E. u  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( ( B `  i
)  =  ( ( ( 1  -  r
)  x.  ( A `
 i ) )  +  ( r  x.  ( x `  i
) ) )  /\  ( C `  i )  =  ( ( ( 1  -  s )  x.  ( A `  i ) )  +  ( s  x.  (
y `  i )
) )  /\  ( T `  i )  =  ( ( ( 1  -  u )  x.  ( x `  i ) )  +  ( u  x.  (
y `  i )
) ) )  <->  ( E. r  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  r )  x.  ( A `  i ) )  +  ( r  x.  (
x `  i )
) )  /\  E. s  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( C `  i )  =  ( ( ( 1  -  s )  x.  ( A `  i ) )  +  ( s  x.  (
y `  i )
) )  /\  E. u  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( T `  i )  =  ( ( ( 1  -  u )  x.  ( x `  i ) )  +  ( u  x.  (
y `  i )
) ) ) )
9488, 93syl6bbr 263 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( x  e.  ( EE `  N )  /\  y  e.  ( EE `  N ) ) )  ->  ( ( B 
Btwn  <. A ,  x >.  /\  C  Btwn  <. A , 
y >.  /\  T  Btwn  <.
x ,  y >.
)  <->  E. r  e.  ( 0 [,] 1 ) E. s  e.  ( 0 [,] 1 ) E. u  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( ( B `  i )  =  ( ( ( 1  -  r )  x.  ( A `  i )
)  +  ( r  x.  ( x `  i ) ) )  /\  ( C `  i )  =  ( ( ( 1  -  s )  x.  ( A `  i )
)  +  ( s  x.  ( y `  i ) ) )  /\  ( T `  i )  =  ( ( ( 1  -  u )  x.  (
x `  i )
)  +  ( u  x.  ( y `  i ) ) ) ) ) )
95942rexbidva 2979 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  -> 
( E. x  e.  ( EE `  N
) E. y  e.  ( EE `  N
) ( B  Btwn  <. A ,  x >.  /\  C  Btwn  <. A , 
y >.  /\  T  Btwn  <.
x ,  y >.
)  <->  E. x  e.  ( EE `  N ) E. y  e.  ( EE `  N ) E. r  e.  ( 0 [,] 1 ) E. s  e.  ( 0 [,] 1 ) E. u  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( ( B `  i )  =  ( ( ( 1  -  r )  x.  ( A `  i )
)  +  ( r  x.  ( x `  i ) ) )  /\  ( C `  i )  =  ( ( ( 1  -  s )  x.  ( A `  i )
)  +  ( s  x.  ( y `  i ) ) )  /\  ( T `  i )  =  ( ( ( 1  -  u )  x.  (
x `  i )
)  +  ( u  x.  ( y `  i ) ) ) ) ) )
9656, 75, 953imtr4d 268 1  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  -> 
( ( D  Btwn  <. A ,  T >.  /\  D  Btwn  <. B ,  C >.  /\  A  =/=  D )  ->  E. x  e.  ( EE `  N
) E. y  e.  ( EE `  N
) ( B  Btwn  <. A ,  x >.  /\  C  Btwn  <. A , 
y >.  /\  T  Btwn  <.
x ,  y >.
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815   <.cop 4033   class class class wbr 4447   ` cfv 5588  (class class class)co 6285   CCcc 9491   0cc0 9493   1c1 9494    + caddc 9496    x. cmul 9498    - cmin 9806   NNcn 10537   [,]cicc 11533   ...cfz 11673   EEcee 23964    Btwn cbtwn 23965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577  ax-cnex 9549  ax-resscn 9550  ax-1cn 9551  ax-icn 9552  ax-addcl 9553  ax-addrcl 9554  ax-mulcl 9555  ax-mulrcl 9556  ax-mulcom 9557  ax-addass 9558  ax-mulass 9559  ax-distr 9560  ax-i2m1 9561  ax-1ne0 9562  ax-1rid 9563  ax-rnegex 9564  ax-rrecex 9565  ax-cnre 9566  ax-pre-lttri 9567  ax-pre-lttrn 9568  ax-pre-ltadd 9569  ax-pre-mulgt0 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6246  df-ov 6288  df-oprab 6289  df-mpt2 6290  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7043  df-rdg 7077  df-er 7312  df-map 7423  df-en 7518  df-dom 7519  df-sdom 7520  df-pnf 9631  df-mnf 9632  df-xr 9633  df-ltxr 9634  df-le 9635  df-sub 9808  df-neg 9809  df-div 10208  df-nn 10538  df-z 10866  df-uz 11084  df-icc 11537  df-fz 11674  df-ee 23967  df-btwn 23968
This theorem is referenced by:  eengtrkge  24062
  Copyright terms: Public domain W3C validator