MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsdsreclblem Structured version   Visualization version   GIF version

Theorem xrsdsreclblem 19611
Description: Lemma for xrsdsreclb 19612. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
xrsds.d 𝐷 = (dist‘ℝ*𝑠)
Assertion
Ref Expression
xrsdsreclblem (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐴𝐵) → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))

Proof of Theorem xrsdsreclblem
StepHypRef Expression
1 necom 2835 . . . . 5 (𝐴𝐵𝐵𝐴)
2 xrleltne 11854 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴 < 𝐵𝐵𝐴))
3 mnfxr 9975 . . . . . . . . . . . 12 -∞ ∈ ℝ*
43a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → -∞ ∈ ℝ*)
5 simpl1 1057 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → 𝐴 ∈ ℝ*)
6 simpl2 1058 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → 𝐵 ∈ ℝ*)
7 pnfnre 9960 . . . . . . . . . . . . . 14 +∞ ∉ ℝ
87neli 2885 . . . . . . . . . . . . 13 ¬ +∞ ∈ ℝ
9 mnfle 11845 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)
105, 9syl 17 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → -∞ ≤ 𝐴)
11 simpl3 1059 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → 𝐴 < 𝐵)
124, 5, 6, 10, 11xrlelttrd 11867 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → -∞ < 𝐵)
13 xrltne 11870 . . . . . . . . . . . . . . . 16 ((-∞ ∈ ℝ*𝐵 ∈ ℝ* ∧ -∞ < 𝐵) → 𝐵 ≠ -∞)
144, 6, 12, 13syl3anc 1318 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → 𝐵 ≠ -∞)
15 xaddpnf1 11931 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (𝐵 +𝑒 +∞) = +∞)
166, 14, 15syl2anc 691 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → (𝐵 +𝑒 +∞) = +∞)
1716eleq1d 2672 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → ((𝐵 +𝑒 +∞) ∈ ℝ ↔ +∞ ∈ ℝ))
188, 17mtbiri 316 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → ¬ (𝐵 +𝑒 +∞) ∈ ℝ)
19 ngtmnft 11872 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴))
205, 19syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴))
21 simpr 476 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ)
22 xnegeq 11912 . . . . . . . . . . . . . . . . 17 (𝐴 = -∞ → -𝑒𝐴 = -𝑒-∞)
23 xnegmnf 11915 . . . . . . . . . . . . . . . . 17 -𝑒-∞ = +∞
2422, 23syl6eq 2660 . . . . . . . . . . . . . . . 16 (𝐴 = -∞ → -𝑒𝐴 = +∞)
2524oveq2d 6565 . . . . . . . . . . . . . . 15 (𝐴 = -∞ → (𝐵 +𝑒 -𝑒𝐴) = (𝐵 +𝑒 +∞))
2625eleq1d 2672 . . . . . . . . . . . . . 14 (𝐴 = -∞ → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ ↔ (𝐵 +𝑒 +∞) ∈ ℝ))
2721, 26syl5ibcom 234 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → (𝐴 = -∞ → (𝐵 +𝑒 +∞) ∈ ℝ))
2820, 27sylbird 249 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → (¬ -∞ < 𝐴 → (𝐵 +𝑒 +∞) ∈ ℝ))
2918, 28mt3d 139 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → -∞ < 𝐴)
30 xrre2 11875 . . . . . . . . . . 11 (((-∞ ∈ ℝ*𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (-∞ < 𝐴𝐴 < 𝐵)) → 𝐴 ∈ ℝ)
314, 5, 6, 29, 11, 30syl32anc 1326 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → 𝐴 ∈ ℝ)
32 pnfxr 9971 . . . . . . . . . . . 12 +∞ ∈ ℝ*
3332a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → +∞ ∈ ℝ*)
345xnegcld 12002 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → -𝑒𝐴 ∈ ℝ*)
35 xnegpnf 11914 . . . . . . . . . . . . . . . . 17 -𝑒+∞ = -∞
36 pnfge 11840 . . . . . . . . . . . . . . . . . . . 20 (𝐵 ∈ ℝ*𝐵 ≤ +∞)
376, 36syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → 𝐵 ≤ +∞)
385, 6, 33, 11, 37xrltletrd 11868 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → 𝐴 < +∞)
39 xltnegi 11921 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐴 < +∞) → -𝑒+∞ < -𝑒𝐴)
405, 33, 38, 39syl3anc 1318 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → -𝑒+∞ < -𝑒𝐴)
4135, 40syl5eqbrr 4619 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → -∞ < -𝑒𝐴)
42 xrltne 11870 . . . . . . . . . . . . . . . 16 ((-∞ ∈ ℝ* ∧ -𝑒𝐴 ∈ ℝ* ∧ -∞ < -𝑒𝐴) → -𝑒𝐴 ≠ -∞)
434, 34, 41, 42syl3anc 1318 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → -𝑒𝐴 ≠ -∞)
44 xaddpnf2 11932 . . . . . . . . . . . . . . 15 ((-𝑒𝐴 ∈ ℝ* ∧ -𝑒𝐴 ≠ -∞) → (+∞ +𝑒 -𝑒𝐴) = +∞)
4534, 43, 44syl2anc 691 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → (+∞ +𝑒 -𝑒𝐴) = +∞)
4645eleq1d 2672 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → ((+∞ +𝑒 -𝑒𝐴) ∈ ℝ ↔ +∞ ∈ ℝ))
478, 46mtbiri 316 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → ¬ (+∞ +𝑒 -𝑒𝐴) ∈ ℝ)
48 nltpnft 11871 . . . . . . . . . . . . . 14 (𝐵 ∈ ℝ* → (𝐵 = +∞ ↔ ¬ 𝐵 < +∞))
496, 48syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → (𝐵 = +∞ ↔ ¬ 𝐵 < +∞))
50 oveq1 6556 . . . . . . . . . . . . . . 15 (𝐵 = +∞ → (𝐵 +𝑒 -𝑒𝐴) = (+∞ +𝑒 -𝑒𝐴))
5150eleq1d 2672 . . . . . . . . . . . . . 14 (𝐵 = +∞ → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ ↔ (+∞ +𝑒 -𝑒𝐴) ∈ ℝ))
5221, 51syl5ibcom 234 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → (𝐵 = +∞ → (+∞ +𝑒 -𝑒𝐴) ∈ ℝ))
5349, 52sylbird 249 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → (¬ 𝐵 < +∞ → (+∞ +𝑒 -𝑒𝐴) ∈ ℝ))
5447, 53mt3d 139 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → 𝐵 < +∞)
55 xrre2 11875 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < +∞)) → 𝐵 ∈ ℝ)
565, 6, 33, 11, 54, 55syl32anc 1326 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → 𝐵 ∈ ℝ)
5731, 56jca 553 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
5857ex 449 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))
59583expia 1259 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))))
60593adant3 1074 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴 < 𝐵 → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))))
612, 60sylbird 249 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐵𝐴 → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))))
621, 61syl5bi 231 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴𝐵 → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))))
63623exp 1256 . . 3 (𝐴 ∈ ℝ* → (𝐵 ∈ ℝ* → (𝐴𝐵 → (𝐴𝐵 → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))))))
6463com34 89 . 2 (𝐴 ∈ ℝ* → (𝐵 ∈ ℝ* → (𝐴𝐵 → (𝐴𝐵 → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))))))
65643imp1 1272 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐴𝐵) → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  cfv 5804  (class class class)co 6549  cr 9814  +∞cpnf 9950  -∞cmnf 9951  *cxr 9952   < clt 9953  cle 9954  -𝑒cxne 11819   +𝑒 cxad 11820  distcds 15777  *𝑠cxrs 15983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-xneg 11822  df-xadd 11823
This theorem is referenced by:  xrsdsreclb  19612
  Copyright terms: Public domain W3C validator