MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmetdcn2 Structured version   Visualization version   GIF version

Theorem xmetdcn2 22448
Description: The metric function of an extended metric space is always continuous in the topology generated by it. In this variation of xmetdcn 22449 we use the metric topology instead of the order topology on *, which makes the theorem a bit stronger. Since +∞ is an isolated point in the metric topology, this is saying that for any points 𝐴, 𝐵 which are an infinite distance apart, there is a product neighborhood around 𝐴, 𝐵 such that 𝑑(𝑎, 𝑏) = +∞ for any 𝑎 near 𝐴 and 𝑏 near 𝐵, i.e. the distance function is locally constant +∞. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 4-Sep-2015.)
Hypotheses
Ref Expression
xmetdcn2.1 𝐽 = (MetOpen‘𝐷)
xmetdcn2.2 𝐶 = (dist‘ℝ*𝑠)
xmetdcn2.3 𝐾 = (MetOpen‘𝐶)
Assertion
Ref Expression
xmetdcn2 (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ ((𝐽 ×t 𝐽) Cn 𝐾))

Proof of Theorem xmetdcn2
Dummy variables 𝑠 𝑟 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmetf 21944 . 2 (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
2 rphalfcl 11734 . . . . . 6 (𝑟 ∈ ℝ+ → (𝑟 / 2) ∈ ℝ+)
32adantl 481 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑟 ∈ ℝ+) → (𝑟 / 2) ∈ ℝ+)
4 xmetdcn2.1 . . . . . . . 8 𝐽 = (MetOpen‘𝐷)
5 xmetdcn2.2 . . . . . . . 8 𝐶 = (dist‘ℝ*𝑠)
6 xmetdcn2.3 . . . . . . . 8 𝐾 = (MetOpen‘𝐶)
7 simp-4l 802 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧𝑋𝑤𝑋)) ∧ ((𝑥𝐷𝑧) < (𝑟 / 2) ∧ (𝑦𝐷𝑤) < (𝑟 / 2))) → 𝐷 ∈ (∞Met‘𝑋))
8 simplrl 796 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑟 ∈ ℝ+) → 𝑥𝑋)
98ad2antrr 758 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧𝑋𝑤𝑋)) ∧ ((𝑥𝐷𝑧) < (𝑟 / 2) ∧ (𝑦𝐷𝑤) < (𝑟 / 2))) → 𝑥𝑋)
10 simplrr 797 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑟 ∈ ℝ+) → 𝑦𝑋)
1110ad2antrr 758 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧𝑋𝑤𝑋)) ∧ ((𝑥𝐷𝑧) < (𝑟 / 2) ∧ (𝑦𝐷𝑤) < (𝑟 / 2))) → 𝑦𝑋)
12 simpllr 795 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧𝑋𝑤𝑋)) ∧ ((𝑥𝐷𝑧) < (𝑟 / 2) ∧ (𝑦𝐷𝑤) < (𝑟 / 2))) → 𝑟 ∈ ℝ+)
13 simplrl 796 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧𝑋𝑤𝑋)) ∧ ((𝑥𝐷𝑧) < (𝑟 / 2) ∧ (𝑦𝐷𝑤) < (𝑟 / 2))) → 𝑧𝑋)
14 simplrr 797 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧𝑋𝑤𝑋)) ∧ ((𝑥𝐷𝑧) < (𝑟 / 2) ∧ (𝑦𝐷𝑤) < (𝑟 / 2))) → 𝑤𝑋)
15 simprl 790 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧𝑋𝑤𝑋)) ∧ ((𝑥𝐷𝑧) < (𝑟 / 2) ∧ (𝑦𝐷𝑤) < (𝑟 / 2))) → (𝑥𝐷𝑧) < (𝑟 / 2))
16 simprr 792 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧𝑋𝑤𝑋)) ∧ ((𝑥𝐷𝑧) < (𝑟 / 2) ∧ (𝑦𝐷𝑤) < (𝑟 / 2))) → (𝑦𝐷𝑤) < (𝑟 / 2))
174, 5, 6, 7, 9, 11, 12, 13, 14, 15, 16metdcnlem 22447 . . . . . . 7 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧𝑋𝑤𝑋)) ∧ ((𝑥𝐷𝑧) < (𝑟 / 2) ∧ (𝑦𝐷𝑤) < (𝑟 / 2))) → ((𝑥𝐷𝑦)𝐶(𝑧𝐷𝑤)) < 𝑟)
1817ex 449 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧𝑋𝑤𝑋)) → (((𝑥𝐷𝑧) < (𝑟 / 2) ∧ (𝑦𝐷𝑤) < (𝑟 / 2)) → ((𝑥𝐷𝑦)𝐶(𝑧𝐷𝑤)) < 𝑟))
1918ralrimivva 2954 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑟 ∈ ℝ+) → ∀𝑧𝑋𝑤𝑋 (((𝑥𝐷𝑧) < (𝑟 / 2) ∧ (𝑦𝐷𝑤) < (𝑟 / 2)) → ((𝑥𝐷𝑦)𝐶(𝑧𝐷𝑤)) < 𝑟))
20 breq2 4587 . . . . . . . . 9 (𝑠 = (𝑟 / 2) → ((𝑥𝐷𝑧) < 𝑠 ↔ (𝑥𝐷𝑧) < (𝑟 / 2)))
21 breq2 4587 . . . . . . . . 9 (𝑠 = (𝑟 / 2) → ((𝑦𝐷𝑤) < 𝑠 ↔ (𝑦𝐷𝑤) < (𝑟 / 2)))
2220, 21anbi12d 743 . . . . . . . 8 (𝑠 = (𝑟 / 2) → (((𝑥𝐷𝑧) < 𝑠 ∧ (𝑦𝐷𝑤) < 𝑠) ↔ ((𝑥𝐷𝑧) < (𝑟 / 2) ∧ (𝑦𝐷𝑤) < (𝑟 / 2))))
2322imbi1d 330 . . . . . . 7 (𝑠 = (𝑟 / 2) → ((((𝑥𝐷𝑧) < 𝑠 ∧ (𝑦𝐷𝑤) < 𝑠) → ((𝑥𝐷𝑦)𝐶(𝑧𝐷𝑤)) < 𝑟) ↔ (((𝑥𝐷𝑧) < (𝑟 / 2) ∧ (𝑦𝐷𝑤) < (𝑟 / 2)) → ((𝑥𝐷𝑦)𝐶(𝑧𝐷𝑤)) < 𝑟)))
24232ralbidv 2972 . . . . . 6 (𝑠 = (𝑟 / 2) → (∀𝑧𝑋𝑤𝑋 (((𝑥𝐷𝑧) < 𝑠 ∧ (𝑦𝐷𝑤) < 𝑠) → ((𝑥𝐷𝑦)𝐶(𝑧𝐷𝑤)) < 𝑟) ↔ ∀𝑧𝑋𝑤𝑋 (((𝑥𝐷𝑧) < (𝑟 / 2) ∧ (𝑦𝐷𝑤) < (𝑟 / 2)) → ((𝑥𝐷𝑦)𝐶(𝑧𝐷𝑤)) < 𝑟)))
2524rspcev 3282 . . . . 5 (((𝑟 / 2) ∈ ℝ+ ∧ ∀𝑧𝑋𝑤𝑋 (((𝑥𝐷𝑧) < (𝑟 / 2) ∧ (𝑦𝐷𝑤) < (𝑟 / 2)) → ((𝑥𝐷𝑦)𝐶(𝑧𝐷𝑤)) < 𝑟)) → ∃𝑠 ∈ ℝ+𝑧𝑋𝑤𝑋 (((𝑥𝐷𝑧) < 𝑠 ∧ (𝑦𝐷𝑤) < 𝑠) → ((𝑥𝐷𝑦)𝐶(𝑧𝐷𝑤)) < 𝑟))
263, 19, 25syl2anc 691 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑟 ∈ ℝ+) → ∃𝑠 ∈ ℝ+𝑧𝑋𝑤𝑋 (((𝑥𝐷𝑧) < 𝑠 ∧ (𝑦𝐷𝑤) < 𝑠) → ((𝑥𝐷𝑦)𝐶(𝑧𝐷𝑤)) < 𝑟))
2726ralrimiva 2949 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧𝑋𝑤𝑋 (((𝑥𝐷𝑧) < 𝑠 ∧ (𝑦𝐷𝑤) < 𝑠) → ((𝑥𝐷𝑦)𝐶(𝑧𝐷𝑤)) < 𝑟))
2827ralrimivva 2954 . 2 (𝐷 ∈ (∞Met‘𝑋) → ∀𝑥𝑋𝑦𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧𝑋𝑤𝑋 (((𝑥𝐷𝑧) < 𝑠 ∧ (𝑦𝐷𝑤) < 𝑠) → ((𝑥𝐷𝑦)𝐶(𝑧𝐷𝑤)) < 𝑟))
29 id 22 . . 3 (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
305xrsxmet 22420 . . . 4 𝐶 ∈ (∞Met‘ℝ*)
3130a1i 11 . . 3 (𝐷 ∈ (∞Met‘𝑋) → 𝐶 ∈ (∞Met‘ℝ*))
324, 4, 6txmetcn 22163 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋) ∧ 𝐶 ∈ (∞Met‘ℝ*)) → (𝐷 ∈ ((𝐽 ×t 𝐽) Cn 𝐾) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋𝑦𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧𝑋𝑤𝑋 (((𝑥𝐷𝑧) < 𝑠 ∧ (𝑦𝐷𝑤) < 𝑠) → ((𝑥𝐷𝑦)𝐶(𝑧𝐷𝑤)) < 𝑟))))
3329, 31, 32mpd3an23 1418 . 2 (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ∈ ((𝐽 ×t 𝐽) Cn 𝐾) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋𝑦𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧𝑋𝑤𝑋 (((𝑥𝐷𝑧) < 𝑠 ∧ (𝑦𝐷𝑤) < 𝑠) → ((𝑥𝐷𝑦)𝐶(𝑧𝐷𝑤)) < 𝑟))))
341, 28, 33mpbir2and 959 1 (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897   class class class wbr 4583   × cxp 5036  wf 5800  cfv 5804  (class class class)co 6549  *cxr 9952   < clt 9953   / cdiv 10563  2c2 10947  +crp 11708  distcds 15777  *𝑠cxrs 15983  ∞Metcxmt 19552  MetOpencmopn 19557   Cn ccn 20838   ×t ctx 21173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cn 20841  df-cnp 20842  df-tx 21175  df-hmeo 21368  df-xms 21935  df-tms 21937
This theorem is referenced by:  xmetdcn  22449
  Copyright terms: Public domain W3C validator