MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txmetcn Structured version   Visualization version   GIF version

Theorem txmetcn 22163
Description: Continuity of a binary operation on metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
metcn.2 𝐽 = (MetOpen‘𝐶)
metcn.4 𝐾 = (MetOpen‘𝐷)
txmetcnp.4 𝐿 = (MetOpen‘𝐸)
Assertion
Ref Expression
txmetcn ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) → (𝐹 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑥𝑋𝑦𝑌𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝑥𝐶𝑢) < 𝑤 ∧ (𝑦𝐷𝑣) < 𝑤) → ((𝑥𝐹𝑦)𝐸(𝑢𝐹𝑣)) < 𝑧))))
Distinct variable groups:   𝑣,𝑢,𝑤,𝑥,𝑦,𝑧,𝐹   𝑢,𝐽,𝑣,𝑤,𝑥,𝑦,𝑧   𝑢,𝐾,𝑣,𝑤,𝑥,𝑦,𝑧   𝑢,𝑋,𝑣,𝑤,𝑥,𝑦,𝑧   𝑢,𝑌,𝑣,𝑤,𝑥,𝑦,𝑧   𝑢,𝑍,𝑣,𝑤,𝑥,𝑦,𝑧   𝑢,𝐶,𝑣,𝑤,𝑥,𝑦,𝑧   𝑢,𝐷,𝑣,𝑤,𝑥,𝑦,𝑧   𝑢,𝐸,𝑣,𝑤,𝑥,𝑦,𝑧   𝑤,𝐿,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐿(𝑣,𝑢)

Proof of Theorem txmetcn
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 metcn.2 . . . . . 6 𝐽 = (MetOpen‘𝐶)
21mopntopon 22054 . . . . 5 (𝐶 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
3 metcn.4 . . . . . 6 𝐾 = (MetOpen‘𝐷)
43mopntopon 22054 . . . . 5 (𝐷 ∈ (∞Met‘𝑌) → 𝐾 ∈ (TopOn‘𝑌))
5 txtopon 21204 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
62, 4, 5syl2an 493 . . . 4 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
763adant3 1074 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
8 txmetcnp.4 . . . . 5 𝐿 = (MetOpen‘𝐸)
98mopntopon 22054 . . . 4 (𝐸 ∈ (∞Met‘𝑍) → 𝐿 ∈ (TopOn‘𝑍))
1093ad2ant3 1077 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) → 𝐿 ∈ (TopOn‘𝑍))
11 cncnp 20894 . . 3 (((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐿 ∈ (TopOn‘𝑍)) → (𝐹 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑡 ∈ (𝑋 × 𝑌)𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘𝑡))))
127, 10, 11syl2anc 691 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) → (𝐹 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑡 ∈ (𝑋 × 𝑌)𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘𝑡))))
13 fveq2 6103 . . . . . 6 (𝑡 = ⟨𝑥, 𝑦⟩ → (((𝐽 ×t 𝐾) CnP 𝐿)‘𝑡) = (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝑥, 𝑦⟩))
1413eleq2d 2673 . . . . 5 (𝑡 = ⟨𝑥, 𝑦⟩ → (𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘𝑡) ↔ 𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝑥, 𝑦⟩)))
1514ralxp 5185 . . . 4 (∀𝑡 ∈ (𝑋 × 𝑌)𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘𝑡) ↔ ∀𝑥𝑋𝑦𝑌 𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝑥, 𝑦⟩))
161, 3, 8txmetcnp 22162 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝑥𝑋𝑦𝑌)) → (𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝑥, 𝑦⟩) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝑥𝐶𝑢) < 𝑤 ∧ (𝑦𝐷𝑣) < 𝑤) → ((𝑥𝐹𝑦)𝐸(𝑢𝐹𝑣)) < 𝑧))))
1716adantlr 747 . . . . . 6 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑥𝑋𝑦𝑌)) → (𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝑥, 𝑦⟩) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝑥𝐶𝑢) < 𝑤 ∧ (𝑦𝐷𝑣) < 𝑤) → ((𝑥𝐹𝑦)𝐸(𝑢𝐹𝑣)) < 𝑧))))
18 simplr 788 . . . . . . 7 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑥𝑋𝑦𝑌)) → 𝐹:(𝑋 × 𝑌)⟶𝑍)
1918biantrurd 528 . . . . . 6 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑥𝑋𝑦𝑌)) → (∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝑥𝐶𝑢) < 𝑤 ∧ (𝑦𝐷𝑣) < 𝑤) → ((𝑥𝐹𝑦)𝐸(𝑢𝐹𝑣)) < 𝑧) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝑥𝐶𝑢) < 𝑤 ∧ (𝑦𝐷𝑣) < 𝑤) → ((𝑥𝐹𝑦)𝐸(𝑢𝐹𝑣)) < 𝑧))))
2017, 19bitr4d 270 . . . . 5 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑥𝑋𝑦𝑌)) → (𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝑥, 𝑦⟩) ↔ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝑥𝐶𝑢) < 𝑤 ∧ (𝑦𝐷𝑣) < 𝑤) → ((𝑥𝐹𝑦)𝐸(𝑢𝐹𝑣)) < 𝑧)))
21202ralbidva 2971 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) → (∀𝑥𝑋𝑦𝑌 𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝑥, 𝑦⟩) ↔ ∀𝑥𝑋𝑦𝑌𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝑥𝐶𝑢) < 𝑤 ∧ (𝑦𝐷𝑣) < 𝑤) → ((𝑥𝐹𝑦)𝐸(𝑢𝐹𝑣)) < 𝑧)))
2215, 21syl5bb 271 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) → (∀𝑡 ∈ (𝑋 × 𝑌)𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘𝑡) ↔ ∀𝑥𝑋𝑦𝑌𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝑥𝐶𝑢) < 𝑤 ∧ (𝑦𝐷𝑣) < 𝑤) → ((𝑥𝐹𝑦)𝐸(𝑢𝐹𝑣)) < 𝑧)))
2322pm5.32da 671 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) → ((𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑡 ∈ (𝑋 × 𝑌)𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘𝑡)) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑥𝑋𝑦𝑌𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝑥𝐶𝑢) < 𝑤 ∧ (𝑦𝐷𝑣) < 𝑤) → ((𝑥𝐹𝑦)𝐸(𝑢𝐹𝑣)) < 𝑧))))
2412, 23bitrd 267 1 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) → (𝐹 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑥𝑋𝑦𝑌𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝑥𝐶𝑢) < 𝑤 ∧ (𝑦𝐷𝑣) < 𝑤) → ((𝑥𝐹𝑦)𝐸(𝑢𝐹𝑣)) < 𝑧))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897  cop 4131   class class class wbr 4583   × cxp 5036  wf 5800  cfv 5804  (class class class)co 6549   < clt 9953  +crp 11708  ∞Metcxmt 19552  MetOpencmopn 19557  TopOnctopon 20518   Cn ccn 20838   CnP ccnp 20839   ×t ctx 21173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cn 20841  df-cnp 20842  df-tx 21175  df-hmeo 21368  df-xms 21935  df-tms 21937
This theorem is referenced by:  ngptgp  22250  nlmvscn  22301  xmetdcn2  22448  addcnlem  22475  ipcn  22853  vacn  26933  smcnlem  26936
  Copyright terms: Public domain W3C validator