Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwapf Structured version   Visualization version   GIF version

Theorem vdwapf 15514
 Description: The arithmetic progression function is a function. (Contributed by Mario Carneiro, 18-Aug-2014.)
Assertion
Ref Expression
vdwapf (𝐾 ∈ ℕ0 → (AP‘𝐾):(ℕ × ℕ)⟶𝒫 ℕ)

Proof of Theorem vdwapf
Dummy variables 𝑎 𝑑 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 786 . . . . . . . 8 (((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑎 ∈ ℕ)
2 elfznn0 12302 . . . . . . . . . 10 (𝑚 ∈ (0...(𝐾 − 1)) → 𝑚 ∈ ℕ0)
32adantl 481 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑚 ∈ ℕ0)
4 nnnn0 11176 . . . . . . . . . 10 (𝑑 ∈ ℕ → 𝑑 ∈ ℕ0)
54ad2antlr 759 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑑 ∈ ℕ0)
63, 5nn0mulcld 11233 . . . . . . . 8 (((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · 𝑑) ∈ ℕ0)
7 nnnn0addcl 11200 . . . . . . . 8 ((𝑎 ∈ ℕ ∧ (𝑚 · 𝑑) ∈ ℕ0) → (𝑎 + (𝑚 · 𝑑)) ∈ ℕ)
81, 6, 7syl2anc 691 . . . . . . 7 (((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑎 + (𝑚 · 𝑑)) ∈ ℕ)
9 eqid 2610 . . . . . . 7 (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))) = (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))
108, 9fmptd 6292 . . . . . 6 ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))):(0...(𝐾 − 1))⟶ℕ)
11 frn 5966 . . . . . 6 ((𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))):(0...(𝐾 − 1))⟶ℕ → ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))) ⊆ ℕ)
1210, 11syl 17 . . . . 5 ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))) ⊆ ℕ)
13 nnex 10903 . . . . . 6 ℕ ∈ V
1413elpw2 4755 . . . . 5 (ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))) ∈ 𝒫 ℕ ↔ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))) ⊆ ℕ)
1512, 14sylibr 223 . . . 4 ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))) ∈ 𝒫 ℕ)
1615rgen2a 2960 . . 3 𝑎 ∈ ℕ ∀𝑑 ∈ ℕ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))) ∈ 𝒫 ℕ
17 eqid 2610 . . . 4 (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))) = (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))))
1817fmpt2 7126 . . 3 (∀𝑎 ∈ ℕ ∀𝑑 ∈ ℕ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))) ∈ 𝒫 ℕ ↔ (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))):(ℕ × ℕ)⟶𝒫 ℕ)
1916, 18mpbi 219 . 2 (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))):(ℕ × ℕ)⟶𝒫 ℕ
20 vdwapfval 15513 . . 3 (𝐾 ∈ ℕ0 → (AP‘𝐾) = (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))))
2120feq1d 5943 . 2 (𝐾 ∈ ℕ0 → ((AP‘𝐾):(ℕ × ℕ)⟶𝒫 ℕ ↔ (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))):(ℕ × ℕ)⟶𝒫 ℕ))
2219, 21mpbiri 247 1 (𝐾 ∈ ℕ0 → (AP‘𝐾):(ℕ × ℕ)⟶𝒫 ℕ)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∈ wcel 1977  ∀wral 2896   ⊆ wss 3540  𝒫 cpw 4108   ↦ cmpt 4643   × cxp 5036  ran crn 5039  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   − cmin 10145  ℕcn 10897  ℕ0cn0 11169  ...cfz 12197  APcvdwa 15507 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-vdwap 15510 This theorem is referenced by:  vdwmc  15520
 Copyright terms: Public domain W3C validator