MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwapfval Structured version   Visualization version   GIF version

Theorem vdwapfval 15513
Description: Define the arithmetic progression function, which takes as input a length 𝑘, a start point 𝑎, and a step 𝑑 and outputs the set of points in this progression. (Contributed by Mario Carneiro, 18-Aug-2014.)
Assertion
Ref Expression
vdwapfval (𝐾 ∈ ℕ0 → (AP‘𝐾) = (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))))
Distinct variable group:   𝑎,𝑑,𝑚,𝐾

Proof of Theorem vdwapfval
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 simp1 1054 . . . . . . 7 ((𝑘 = 𝐾𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → 𝑘 = 𝐾)
21oveq1d 6564 . . . . . 6 ((𝑘 = 𝐾𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → (𝑘 − 1) = (𝐾 − 1))
32oveq2d 6565 . . . . 5 ((𝑘 = 𝐾𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → (0...(𝑘 − 1)) = (0...(𝐾 − 1)))
43mpteq1d 4666 . . . 4 ((𝑘 = 𝐾𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → (𝑚 ∈ (0...(𝑘 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))) = (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))))
54rneqd 5274 . . 3 ((𝑘 = 𝐾𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → ran (𝑚 ∈ (0...(𝑘 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))) = ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))))
65mpt2eq3dva 6617 . 2 (𝑘 = 𝐾 → (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝑘 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))) = (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))))
7 df-vdwap 15510 . 2 AP = (𝑘 ∈ ℕ0 ↦ (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝑘 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))))
8 nnex 10903 . . 3 ℕ ∈ V
98, 8mpt2ex 7136 . 2 (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))) ∈ V
106, 7, 9fvmpt 6191 1 (𝐾 ∈ ℕ0 → (AP‘𝐾) = (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1031   = wceq 1475  wcel 1977  cmpt 4643  ran crn 5039  cfv 5804  (class class class)co 6549  cmpt2 6551  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  cmin 10145  cn 10897  0cn0 11169  ...cfz 12197  APcvdwa 15507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-i2m1 9883  ax-1ne0 9884  ax-rrecex 9887  ax-cnre 9888
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-nn 10898  df-vdwap 15510
This theorem is referenced by:  vdwapf  15514  vdwapval  15515
  Copyright terms: Public domain W3C validator