Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unbdqndv2 Structured version   Visualization version   GIF version

Theorem unbdqndv2 31672
Description: Variant of unbdqndv1 31669 with the hypothesis that (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)) is unbounded where 𝑥𝐴 and 𝐴𝑦. (Contributed by Asger C. Ipsen, 12-May-2021.)
Hypotheses
Ref Expression
unbdqndv2.x (𝜑𝑋 ⊆ ℝ)
unbdqndv2.f (𝜑𝐹:𝑋⟶ℂ)
unbdqndv2.1 (𝜑 → ∀𝑏 ∈ ℝ+𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ 𝑏 ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))))
Assertion
Ref Expression
unbdqndv2 (𝜑 → ¬ 𝐴 ∈ dom (ℝ D 𝐹))
Distinct variable groups:   𝐴,𝑏,𝑑,𝑥,𝑦   𝐹,𝑏,𝑑,𝑥,𝑦   𝑋,𝑏,𝑑,𝑥,𝑦   𝜑,𝑏,𝑑,𝑥,𝑦

Proof of Theorem unbdqndv2
Dummy variables 𝑐 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . 3 (𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴))) = (𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))
2 ax-resscn 9872 . . . 4 ℝ ⊆ ℂ
32a1i 11 . . 3 ((𝜑𝐴 ∈ dom (ℝ D 𝐹)) → ℝ ⊆ ℂ)
4 unbdqndv2.x . . . 4 (𝜑𝑋 ⊆ ℝ)
54adantr 480 . . 3 ((𝜑𝐴 ∈ dom (ℝ D 𝐹)) → 𝑋 ⊆ ℝ)
6 unbdqndv2.f . . . 4 (𝜑𝐹:𝑋⟶ℂ)
76adantr 480 . . 3 ((𝜑𝐴 ∈ dom (ℝ D 𝐹)) → 𝐹:𝑋⟶ℂ)
8 breq1 4586 . . . . . . . . . . 11 (𝑏 = (2 · 𝑐) → (𝑏 ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)) ↔ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))))
983anbi3d 1397 . . . . . . . . . 10 (𝑏 = (2 · 𝑐) → (((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ 𝑏 ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))) ↔ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))))
109rexbidv 3034 . . . . . . . . 9 (𝑏 = (2 · 𝑐) → (∃𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ 𝑏 ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))) ↔ ∃𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))))
1110rexbidv 3034 . . . . . . . 8 (𝑏 = (2 · 𝑐) → (∃𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ 𝑏 ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))) ↔ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))))
1211ralbidv 2969 . . . . . . 7 (𝑏 = (2 · 𝑐) → (∀𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ 𝑏 ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))) ↔ ∀𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))))
13 unbdqndv2.1 . . . . . . . 8 (𝜑 → ∀𝑏 ∈ ℝ+𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ 𝑏 ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))))
1413ad2antrr 758 . . . . . . 7 (((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → ∀𝑏 ∈ ℝ+𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ 𝑏 ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))))
15 2rp 11713 . . . . . . . . 9 2 ∈ ℝ+
1615a1i 11 . . . . . . . 8 (((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 2 ∈ ℝ+)
17 simprl 790 . . . . . . . 8 (((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝑐 ∈ ℝ+)
1816, 17rpmulcld 11764 . . . . . . 7 (((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → (2 · 𝑐) ∈ ℝ+)
1912, 14, 18rspcdva 3288 . . . . . 6 (((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → ∀𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))))
20 simprr 792 . . . . . 6 (((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝑑 ∈ ℝ+)
21 rsp 2913 . . . . . 6 (∀𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))) → (𝑑 ∈ ℝ+ → ∃𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))))
2219, 20, 21sylc 63 . . . . 5 (((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → ∃𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))))
23 eqid 2610 . . . . . . . . . 10 if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) = if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦)
245ad3antrrr 762 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → 𝑋 ⊆ ℝ)
257ad3antrrr 762 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → 𝐹:𝑋⟶ℂ)
263, 7, 5dvbss 23471 . . . . . . . . . . . . . 14 ((𝜑𝐴 ∈ dom (ℝ D 𝐹)) → dom (ℝ D 𝐹) ⊆ 𝑋)
27 simpr 476 . . . . . . . . . . . . . 14 ((𝜑𝐴 ∈ dom (ℝ D 𝐹)) → 𝐴 ∈ dom (ℝ D 𝐹))
2826, 27sseldd 3569 . . . . . . . . . . . . 13 ((𝜑𝐴 ∈ dom (ℝ D 𝐹)) → 𝐴𝑋)
2928adantr 480 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝐴𝑋)
3029adantr 480 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) → 𝐴𝑋)
3130adantr 480 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → 𝐴𝑋)
3217ad2antrr 758 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → 𝑐 ∈ ℝ+)
3320ad2antrr 758 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → 𝑑 ∈ ℝ+)
34 simplrl 796 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → 𝑥𝑋)
35 simplrr 797 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → 𝑦𝑋)
36 simpr2r 1114 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → 𝑥𝑦)
37 simpr1l 1111 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → 𝑥𝐴)
38 simpr1r 1112 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → 𝐴𝑦)
39 simpr2l 1113 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → (𝑦𝑥) < 𝑑)
40 simpr3 1062 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))
411, 23, 24, 25, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40unbdqndv2lem2 31671 . . . . . . . . 9 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → (if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) ∈ (𝑋 ∖ {𝐴}) ∧ ((abs‘(if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) − 𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦))))))
4241simpld 474 . . . . . . . 8 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) ∈ (𝑋 ∖ {𝐴}))
43 oveq1 6556 . . . . . . . . . . . 12 (𝑤 = if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) → (𝑤𝐴) = (if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) − 𝐴))
4443fveq2d 6107 . . . . . . . . . . 11 (𝑤 = if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) → (abs‘(𝑤𝐴)) = (abs‘(if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) − 𝐴)))
4544breq1d 4593 . . . . . . . . . 10 (𝑤 = if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) → ((abs‘(𝑤𝐴)) < 𝑑 ↔ (abs‘(if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) − 𝐴)) < 𝑑))
46 fveq2 6103 . . . . . . . . . . . 12 (𝑤 = if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) → ((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘𝑤) = ((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦)))
4746fveq2d 6107 . . . . . . . . . . 11 (𝑤 = if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) → (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘𝑤)) = (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦))))
4847breq2d 4595 . . . . . . . . . 10 (𝑤 = if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) → (𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘𝑤)) ↔ 𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦)))))
4945, 48anbi12d 743 . . . . . . . . 9 (𝑤 = if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) → (((abs‘(𝑤𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘𝑤))) ↔ ((abs‘(if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) − 𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦))))))
5049adantl 481 . . . . . . . 8 ((((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) ∧ 𝑤 = if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦)) → (((abs‘(𝑤𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘𝑤))) ↔ ((abs‘(if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) − 𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦))))))
5141simprd 478 . . . . . . . 8 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → ((abs‘(if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) − 𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦)))))
5242, 50, 51rspcedvd 3289 . . . . . . 7 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → ∃𝑤 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑤𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘𝑤))))
5352ex 449 . . . . . 6 ((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) → (((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))) → ∃𝑤 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑤𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘𝑤)))))
5453rexlimdvva 3020 . . . . 5 (((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → (∃𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))) → ∃𝑤 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑤𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘𝑤)))))
5522, 54mpd 15 . . . 4 (((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → ∃𝑤 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑤𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘𝑤))))
5655ralrimivva 2954 . . 3 ((𝜑𝐴 ∈ dom (ℝ D 𝐹)) → ∀𝑐 ∈ ℝ+𝑑 ∈ ℝ+𝑤 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑤𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘𝑤))))
571, 3, 5, 7, 56unbdqndv1 31669 . 2 ((𝜑𝐴 ∈ dom (ℝ D 𝐹)) → ¬ 𝐴 ∈ dom (ℝ D 𝐹))
5857pm2.01da 457 1 (𝜑 → ¬ 𝐴 ∈ dom (ℝ D 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  cdif 3537  wss 3540  ifcif 4036  {csn 4125   class class class wbr 4583  cmpt 4643  dom cdm 5038  wf 5800  cfv 5804  (class class class)co 6549  cc 9813  cr 9814   · cmul 9820   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  2c2 10947  +crp 11708  abscabs 13822   D cdv 23433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-fz 12198  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-mulr 15782  df-starv 15783  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-rest 15906  df-topn 15907  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-ntr 20634  df-cnp 20842  df-xms 21935  df-ms 21936  df-limc 23436  df-dv 23437
This theorem is referenced by:  knoppndv  31695
  Copyright terms: Public domain W3C validator