MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supxrre Structured version   Visualization version   GIF version

Theorem supxrre 12029
Description: The real and extended real suprema match when the real supremum exists. (Contributed by NM, 18-Oct-2005.) (Proof shortened by Mario Carneiro, 7-Sep-2014.)
Assertion
Ref Expression
supxrre ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ*, < ) = sup(𝐴, ℝ, < ))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem supxrre
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 suprcl 10862 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ∈ ℝ)
21leidd 10473 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ≤ sup(𝐴, ℝ, < ))
3 suprleub 10866 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ sup(𝐴, ℝ, < ) ∈ ℝ) → (sup(𝐴, ℝ, < ) ≤ sup(𝐴, ℝ, < ) ↔ ∀𝑧𝐴 𝑧 ≤ sup(𝐴, ℝ, < )))
41, 3mpdan 699 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → (sup(𝐴, ℝ, < ) ≤ sup(𝐴, ℝ, < ) ↔ ∀𝑧𝐴 𝑧 ≤ sup(𝐴, ℝ, < )))
5 simp1 1054 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → 𝐴 ⊆ ℝ)
6 ressxr 9962 . . . . . 6 ℝ ⊆ ℝ*
75, 6syl6ss 3580 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → 𝐴 ⊆ ℝ*)
81rexrd 9968 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ∈ ℝ*)
9 supxrleub 12028 . . . . 5 ((𝐴 ⊆ ℝ* ∧ sup(𝐴, ℝ, < ) ∈ ℝ*) → (sup(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ, < ) ↔ ∀𝑧𝐴 𝑧 ≤ sup(𝐴, ℝ, < )))
107, 8, 9syl2anc 691 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → (sup(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ, < ) ↔ ∀𝑧𝐴 𝑧 ≤ sup(𝐴, ℝ, < )))
114, 10bitr4d 270 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → (sup(𝐴, ℝ, < ) ≤ sup(𝐴, ℝ, < ) ↔ sup(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ, < )))
122, 11mpbid 221 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ, < ))
13 supxrcl 12017 . . . . 5 (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*)
147, 13syl 17 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
15 xrleid 11859 . . . 4 (sup(𝐴, ℝ*, < ) ∈ ℝ* → sup(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ*, < ))
1614, 15syl 17 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ*, < ))
17 supxrleub 12028 . . . . 5 ((𝐴 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ∈ ℝ*) → (sup(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ*, < ) ↔ ∀𝑥𝐴 𝑥 ≤ sup(𝐴, ℝ*, < )))
187, 14, 17syl2anc 691 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → (sup(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ*, < ) ↔ ∀𝑥𝐴 𝑥 ≤ sup(𝐴, ℝ*, < )))
19 simp2 1055 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → 𝐴 ≠ ∅)
20 n0 3890 . . . . . . . 8 (𝐴 ≠ ∅ ↔ ∃𝑧 𝑧𝐴)
2119, 20sylib 207 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → ∃𝑧 𝑧𝐴)
22 mnfxr 9975 . . . . . . . . 9 -∞ ∈ ℝ*
2322a1i 11 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝑧𝐴) → -∞ ∈ ℝ*)
245sselda 3568 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝑧𝐴) → 𝑧 ∈ ℝ)
2524rexrd 9968 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝑧𝐴) → 𝑧 ∈ ℝ*)
2614adantr 480 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝑧𝐴) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
27 mnflt 11833 . . . . . . . . 9 (𝑧 ∈ ℝ → -∞ < 𝑧)
2824, 27syl 17 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝑧𝐴) → -∞ < 𝑧)
29 supxrub 12026 . . . . . . . . 9 ((𝐴 ⊆ ℝ*𝑧𝐴) → 𝑧 ≤ sup(𝐴, ℝ*, < ))
307, 29sylan 487 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝑧𝐴) → 𝑧 ≤ sup(𝐴, ℝ*, < ))
3123, 25, 26, 28, 30xrltletrd 11868 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝑧𝐴) → -∞ < sup(𝐴, ℝ*, < ))
3221, 31exlimddv 1850 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → -∞ < sup(𝐴, ℝ*, < ))
33 xrre 11874 . . . . . 6 (((sup(𝐴, ℝ*, < ) ∈ ℝ* ∧ sup(𝐴, ℝ, < ) ∈ ℝ) ∧ (-∞ < sup(𝐴, ℝ*, < ) ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ, < ))) → sup(𝐴, ℝ*, < ) ∈ ℝ)
3414, 1, 32, 12, 33syl22anc 1319 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ*, < ) ∈ ℝ)
35 suprleub 10866 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → (sup(𝐴, ℝ, < ) ≤ sup(𝐴, ℝ*, < ) ↔ ∀𝑥𝐴 𝑥 ≤ sup(𝐴, ℝ*, < )))
3634, 35mpdan 699 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → (sup(𝐴, ℝ, < ) ≤ sup(𝐴, ℝ*, < ) ↔ ∀𝑥𝐴 𝑥 ≤ sup(𝐴, ℝ*, < )))
3718, 36bitr4d 270 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → (sup(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ*, < ) ↔ sup(𝐴, ℝ, < ) ≤ sup(𝐴, ℝ*, < )))
3816, 37mpbid 221 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ≤ sup(𝐴, ℝ*, < ))
39 xrletri3 11861 . . 3 ((sup(𝐴, ℝ*, < ) ∈ ℝ* ∧ sup(𝐴, ℝ, < ) ∈ ℝ*) → (sup(𝐴, ℝ*, < ) = sup(𝐴, ℝ, < ) ↔ (sup(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ, < ) ∧ sup(𝐴, ℝ, < ) ≤ sup(𝐴, ℝ*, < ))))
4014, 8, 39syl2anc 691 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → (sup(𝐴, ℝ*, < ) = sup(𝐴, ℝ, < ) ↔ (sup(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ, < ) ∧ sup(𝐴, ℝ, < ) ≤ sup(𝐴, ℝ*, < ))))
4112, 38, 40mpbir2and 959 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ*, < ) = sup(𝐴, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  wne 2780  wral 2896  wrex 2897  wss 3540  c0 3874   class class class wbr 4583  supcsup 8229  cr 9814  -∞cmnf 9951  *cxr 9952   < clt 9953  cle 9954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148
This theorem is referenced by:  supxrbnd  12030  ovoliunlem1  23077  ovoliun2  23081  ioombl1lem4  23136  uniioombllem2  23157  uniioombllem6  23162  itg1climres  23287  itg2monolem1  23323  itg2i1fseq2  23329  nmcexi  28269  itg2addnc  32634  sge0supre  39282  sge0reuzb  39341
  Copyright terms: Public domain W3C validator