MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioombllem6 Structured version   Visualization version   GIF version

Theorem uniioombllem6 23162
Description: Lemma for uniioombl 23163. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypotheses
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.2 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
uniioombl.3 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
uniioombl.a 𝐴 = ran ((,) ∘ 𝐹)
uniioombl.e (𝜑 → (vol*‘𝐸) ∈ ℝ)
uniioombl.c (𝜑𝐶 ∈ ℝ+)
uniioombl.g (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.s (𝜑𝐸 ran ((,) ∘ 𝐺))
uniioombl.t 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
uniioombl.v (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
Assertion
Ref Expression
uniioombllem6 (𝜑 → ((vol*‘(𝐸𝐴)) + (vol*‘(𝐸𝐴))) ≤ ((vol*‘𝐸) + (4 · 𝐶)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥   𝑥,𝑇
Allowed substitution hints:   𝑆(𝑥)   𝐸(𝑥)

Proof of Theorem uniioombllem6
Dummy variables 𝑎 𝑖 𝑗 𝑘 𝑛 𝑦 𝑧 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 11599 . . . 4 ℕ = (ℤ‘1)
2 1zzd 11285 . . . 4 (𝜑 → 1 ∈ ℤ)
3 uniioombl.c . . . 4 (𝜑𝐶 ∈ ℝ+)
4 eqidd 2611 . . . 4 ((𝜑𝑚 ∈ ℕ) → (𝑇𝑚) = (𝑇𝑚))
5 uniioombl.t . . . . . 6 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
6 eqidd 2611 . . . . . 6 ((𝜑𝑎 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑎) = (((abs ∘ − ) ∘ 𝐺)‘𝑎))
7 uniioombl.g . . . . . . . . . 10 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
8 eqid 2610 . . . . . . . . . . 11 ((abs ∘ − ) ∘ 𝐺) = ((abs ∘ − ) ∘ 𝐺)
98ovolfsf 23047 . . . . . . . . . 10 (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((abs ∘ − ) ∘ 𝐺):ℕ⟶(0[,)+∞))
107, 9syl 17 . . . . . . . . 9 (𝜑 → ((abs ∘ − ) ∘ 𝐺):ℕ⟶(0[,)+∞))
1110ffvelrnda 6267 . . . . . . . 8 ((𝜑𝑎 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑎) ∈ (0[,)+∞))
12 elrege0 12149 . . . . . . . 8 ((((abs ∘ − ) ∘ 𝐺)‘𝑎) ∈ (0[,)+∞) ↔ ((((abs ∘ − ) ∘ 𝐺)‘𝑎) ∈ ℝ ∧ 0 ≤ (((abs ∘ − ) ∘ 𝐺)‘𝑎)))
1311, 12sylib 207 . . . . . . 7 ((𝜑𝑎 ∈ ℕ) → ((((abs ∘ − ) ∘ 𝐺)‘𝑎) ∈ ℝ ∧ 0 ≤ (((abs ∘ − ) ∘ 𝐺)‘𝑎)))
1413simpld 474 . . . . . 6 ((𝜑𝑎 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑎) ∈ ℝ)
1513simprd 478 . . . . . 6 ((𝜑𝑎 ∈ ℕ) → 0 ≤ (((abs ∘ − ) ∘ 𝐺)‘𝑎))
16 uniioombl.1 . . . . . . . 8 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
17 uniioombl.2 . . . . . . . 8 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
18 uniioombl.3 . . . . . . . 8 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
19 uniioombl.a . . . . . . . 8 𝐴 = ran ((,) ∘ 𝐹)
20 uniioombl.e . . . . . . . 8 (𝜑 → (vol*‘𝐸) ∈ ℝ)
21 uniioombl.s . . . . . . . 8 (𝜑𝐸 ran ((,) ∘ 𝐺))
22 uniioombl.v . . . . . . . 8 (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
2316, 17, 18, 19, 20, 3, 7, 21, 5, 22uniioombllem1 23155 . . . . . . 7 (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
248, 5ovolsf 23048 . . . . . . . . . . . . 13 (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑇:ℕ⟶(0[,)+∞))
257, 24syl 17 . . . . . . . . . . . 12 (𝜑𝑇:ℕ⟶(0[,)+∞))
26 frn 5966 . . . . . . . . . . . 12 (𝑇:ℕ⟶(0[,)+∞) → ran 𝑇 ⊆ (0[,)+∞))
2725, 26syl 17 . . . . . . . . . . 11 (𝜑 → ran 𝑇 ⊆ (0[,)+∞))
28 icossxr 12129 . . . . . . . . . . 11 (0[,)+∞) ⊆ ℝ*
2927, 28syl6ss 3580 . . . . . . . . . 10 (𝜑 → ran 𝑇 ⊆ ℝ*)
30 supxrub 12026 . . . . . . . . . 10 ((ran 𝑇 ⊆ ℝ*𝑥 ∈ ran 𝑇) → 𝑥 ≤ sup(ran 𝑇, ℝ*, < ))
3129, 30sylan 487 . . . . . . . . 9 ((𝜑𝑥 ∈ ran 𝑇) → 𝑥 ≤ sup(ran 𝑇, ℝ*, < ))
3231ralrimiva 2949 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ ran 𝑇 𝑥 ≤ sup(ran 𝑇, ℝ*, < ))
33 ffn 5958 . . . . . . . . . 10 (𝑇:ℕ⟶(0[,)+∞) → 𝑇 Fn ℕ)
3425, 33syl 17 . . . . . . . . 9 (𝜑𝑇 Fn ℕ)
35 breq1 4586 . . . . . . . . . 10 (𝑥 = (𝑇𝑚) → (𝑥 ≤ sup(ran 𝑇, ℝ*, < ) ↔ (𝑇𝑚) ≤ sup(ran 𝑇, ℝ*, < )))
3635ralrn 6270 . . . . . . . . 9 (𝑇 Fn ℕ → (∀𝑥 ∈ ran 𝑇 𝑥 ≤ sup(ran 𝑇, ℝ*, < ) ↔ ∀𝑚 ∈ ℕ (𝑇𝑚) ≤ sup(ran 𝑇, ℝ*, < )))
3734, 36syl 17 . . . . . . . 8 (𝜑 → (∀𝑥 ∈ ran 𝑇 𝑥 ≤ sup(ran 𝑇, ℝ*, < ) ↔ ∀𝑚 ∈ ℕ (𝑇𝑚) ≤ sup(ran 𝑇, ℝ*, < )))
3832, 37mpbid 221 . . . . . . 7 (𝜑 → ∀𝑚 ∈ ℕ (𝑇𝑚) ≤ sup(ran 𝑇, ℝ*, < ))
39 breq2 4587 . . . . . . . . 9 (𝑥 = sup(ran 𝑇, ℝ*, < ) → ((𝑇𝑚) ≤ 𝑥 ↔ (𝑇𝑚) ≤ sup(ran 𝑇, ℝ*, < )))
4039ralbidv 2969 . . . . . . . 8 (𝑥 = sup(ran 𝑇, ℝ*, < ) → (∀𝑚 ∈ ℕ (𝑇𝑚) ≤ 𝑥 ↔ ∀𝑚 ∈ ℕ (𝑇𝑚) ≤ sup(ran 𝑇, ℝ*, < )))
4140rspcev 3282 . . . . . . 7 ((sup(ran 𝑇, ℝ*, < ) ∈ ℝ ∧ ∀𝑚 ∈ ℕ (𝑇𝑚) ≤ sup(ran 𝑇, ℝ*, < )) → ∃𝑥 ∈ ℝ ∀𝑚 ∈ ℕ (𝑇𝑚) ≤ 𝑥)
4223, 38, 41syl2anc 691 . . . . . 6 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑚 ∈ ℕ (𝑇𝑚) ≤ 𝑥)
431, 5, 2, 6, 14, 15, 42isumsup2 14417 . . . . 5 (𝜑𝑇 ⇝ sup(ran 𝑇, ℝ, < ))
44 rge0ssre 12151 . . . . . . 7 (0[,)+∞) ⊆ ℝ
4527, 44syl6ss 3580 . . . . . 6 (𝜑 → ran 𝑇 ⊆ ℝ)
46 1nn 10908 . . . . . . . . 9 1 ∈ ℕ
47 fdm 5964 . . . . . . . . . 10 (𝑇:ℕ⟶(0[,)+∞) → dom 𝑇 = ℕ)
4825, 47syl 17 . . . . . . . . 9 (𝜑 → dom 𝑇 = ℕ)
4946, 48syl5eleqr 2695 . . . . . . . 8 (𝜑 → 1 ∈ dom 𝑇)
50 ne0i 3880 . . . . . . . 8 (1 ∈ dom 𝑇 → dom 𝑇 ≠ ∅)
5149, 50syl 17 . . . . . . 7 (𝜑 → dom 𝑇 ≠ ∅)
52 dm0rn0 5263 . . . . . . . 8 (dom 𝑇 = ∅ ↔ ran 𝑇 = ∅)
5352necon3bii 2834 . . . . . . 7 (dom 𝑇 ≠ ∅ ↔ ran 𝑇 ≠ ∅)
5451, 53sylib 207 . . . . . 6 (𝜑 → ran 𝑇 ≠ ∅)
55 breq2 4587 . . . . . . . . 9 (𝑦 = sup(ran 𝑇, ℝ*, < ) → (𝑥𝑦𝑥 ≤ sup(ran 𝑇, ℝ*, < )))
5655ralbidv 2969 . . . . . . . 8 (𝑦 = sup(ran 𝑇, ℝ*, < ) → (∀𝑥 ∈ ran 𝑇 𝑥𝑦 ↔ ∀𝑥 ∈ ran 𝑇 𝑥 ≤ sup(ran 𝑇, ℝ*, < )))
5756rspcev 3282 . . . . . . 7 ((sup(ran 𝑇, ℝ*, < ) ∈ ℝ ∧ ∀𝑥 ∈ ran 𝑇 𝑥 ≤ sup(ran 𝑇, ℝ*, < )) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ran 𝑇 𝑥𝑦)
5823, 32, 57syl2anc 691 . . . . . 6 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ran 𝑇 𝑥𝑦)
59 supxrre 12029 . . . . . 6 ((ran 𝑇 ⊆ ℝ ∧ ran 𝑇 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑥 ∈ ran 𝑇 𝑥𝑦) → sup(ran 𝑇, ℝ*, < ) = sup(ran 𝑇, ℝ, < ))
6045, 54, 58, 59syl3anc 1318 . . . . 5 (𝜑 → sup(ran 𝑇, ℝ*, < ) = sup(ran 𝑇, ℝ, < ))
6143, 60breqtrrd 4611 . . . 4 (𝜑𝑇 ⇝ sup(ran 𝑇, ℝ*, < ))
621, 2, 3, 4, 61climi2 14090 . . 3 (𝜑 → ∃𝑗 ∈ ℕ ∀𝑚 ∈ (ℤ𝑗)(abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)
631r19.2uz 13939 . . 3 (∃𝑗 ∈ ℕ ∀𝑚 ∈ (ℤ𝑗)(abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶 → ∃𝑚 ∈ ℕ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)
6462, 63syl 17 . 2 (𝜑 → ∃𝑚 ∈ ℕ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)
65 1zzd 11285 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → 1 ∈ ℤ)
663ad2antrr 758 . . . . . . . . . 10 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → 𝐶 ∈ ℝ+)
67 simplrl 796 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → 𝑚 ∈ ℕ)
6867nnrpd 11746 . . . . . . . . . 10 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → 𝑚 ∈ ℝ+)
6966, 68rpdivcld 11765 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → (𝐶 / 𝑚) ∈ ℝ+)
70 fvex 6113 . . . . . . . . . . . . . . . 16 ((,)‘(𝐹𝑧)) ∈ V
7170inex1 4727 . . . . . . . . . . . . . . 15 (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))) ∈ V
7271rgenw 2908 . . . . . . . . . . . . . 14 𝑧 ∈ ℕ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))) ∈ V
73 eqid 2610 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))) = (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))))
7473fnmpt 5933 . . . . . . . . . . . . . 14 (∀𝑧 ∈ ℕ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))) ∈ V → (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))) Fn ℕ)
7572, 74mp1i 13 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) → (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))) Fn ℕ)
76 elfznn 12241 . . . . . . . . . . . . 13 (𝑖 ∈ (1...𝑛) → 𝑖 ∈ ℕ)
77 fvco2 6183 . . . . . . . . . . . . 13 (((𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))) Fn ℕ ∧ 𝑖 ∈ ℕ) → ((vol* ∘ (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))))‘𝑖) = (vol*‘((𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))))‘𝑖)))
7875, 76, 77syl2an 493 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (1...𝑛)) → ((vol* ∘ (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))))‘𝑖) = (vol*‘((𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))))‘𝑖)))
7976adantl 481 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (1...𝑛)) → 𝑖 ∈ ℕ)
80 fveq2 6103 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑖 → (𝐹𝑧) = (𝐹𝑖))
8180fveq2d 6107 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑖 → ((,)‘(𝐹𝑧)) = ((,)‘(𝐹𝑖)))
8281ineq1d 3775 . . . . . . . . . . . . . . 15 (𝑧 = 𝑖 → (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))
83 fvex 6113 . . . . . . . . . . . . . . . 16 ((,)‘(𝐹𝑖)) ∈ V
8483inex1 4727 . . . . . . . . . . . . . . 15 (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ V
8582, 73, 84fvmpt 6191 . . . . . . . . . . . . . 14 (𝑖 ∈ ℕ → ((𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))))‘𝑖) = (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))
8679, 85syl 17 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (1...𝑛)) → ((𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))))‘𝑖) = (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))
8786fveq2d 6107 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (1...𝑛)) → (vol*‘((𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))))‘𝑖)) = (vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
8878, 87eqtrd 2644 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (1...𝑛)) → ((vol* ∘ (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))))‘𝑖) = (vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
89 simpr 476 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
9089, 1syl6eleq 2698 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ (ℤ‘1))
91 inss2 3796 . . . . . . . . . . . . . 14 (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ((,)‘(𝐺𝑗))
9291a1i 11 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (1...𝑛)) → (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ((,)‘(𝐺𝑗)))
93 inss2 3796 . . . . . . . . . . . . . . . . . . 19 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
947adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
95 elfznn 12241 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (1...𝑚) → 𝑗 ∈ ℕ)
96 ffvelrn 6265 . . . . . . . . . . . . . . . . . . . 20 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑗 ∈ ℕ) → (𝐺𝑗) ∈ ( ≤ ∩ (ℝ × ℝ)))
9794, 95, 96syl2an 493 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → (𝐺𝑗) ∈ ( ≤ ∩ (ℝ × ℝ)))
9893, 97sseldi 3566 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → (𝐺𝑗) ∈ (ℝ × ℝ))
99 1st2nd2 7096 . . . . . . . . . . . . . . . . . 18 ((𝐺𝑗) ∈ (ℝ × ℝ) → (𝐺𝑗) = ⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
10098, 99syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → (𝐺𝑗) = ⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
101100fveq2d 6107 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → ((,)‘(𝐺𝑗)) = ((,)‘⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩))
102 df-ov 6552 . . . . . . . . . . . . . . . 16 ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))) = ((,)‘⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
103101, 102syl6eqr 2662 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → ((,)‘(𝐺𝑗)) = ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))))
104 ioossre 12106 . . . . . . . . . . . . . . 15 ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))) ⊆ ℝ
105103, 104syl6eqss 3618 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → ((,)‘(𝐺𝑗)) ⊆ ℝ)
106105ad2antrr 758 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (1...𝑛)) → ((,)‘(𝐺𝑗)) ⊆ ℝ)
107103fveq2d 6107 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → (vol*‘((,)‘(𝐺𝑗))) = (vol*‘((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗)))))
108 ovolfcl 23042 . . . . . . . . . . . . . . . . . 18 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑗 ∈ ℕ) → ((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))))
10994, 95, 108syl2an 493 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → ((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))))
110 ovolioo 23143 . . . . . . . . . . . . . . . . 17 (((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))) → (vol*‘((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗)))) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
111109, 110syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → (vol*‘((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗)))) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
112107, 111eqtrd 2644 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → (vol*‘((,)‘(𝐺𝑗))) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
113109simp2d 1067 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → (2nd ‘(𝐺𝑗)) ∈ ℝ)
114109simp1d 1066 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → (1st ‘(𝐺𝑗)) ∈ ℝ)
115113, 114resubcld 10337 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) ∈ ℝ)
116112, 115eqeltrd 2688 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → (vol*‘((,)‘(𝐺𝑗))) ∈ ℝ)
117116ad2antrr 758 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (1...𝑛)) → (vol*‘((,)‘(𝐺𝑗))) ∈ ℝ)
118 ovolsscl 23061 . . . . . . . . . . . . 13 (((((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ((,)‘(𝐺𝑗)) ∧ ((,)‘(𝐺𝑗)) ⊆ ℝ ∧ (vol*‘((,)‘(𝐺𝑗))) ∈ ℝ) → (vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
11992, 106, 117, 118syl3anc 1318 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (1...𝑛)) → (vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
120119recnd 9947 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (1...𝑛)) → (vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℂ)
12188, 90, 120fsumser 14308 . . . . . . . . . 10 ((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) → Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = (seq1( + , (vol* ∘ (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))))))‘𝑛))
122121eqcomd 2616 . . . . . . . . 9 ((((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) ∧ 𝑛 ∈ ℕ) → (seq1( + , (vol* ∘ (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))))))‘𝑛) = Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
123 fveq2 6103 . . . . . . . . . . . . . . 15 (𝑧 = 𝑘 → (𝐹𝑧) = (𝐹𝑘))
124123fveq2d 6107 . . . . . . . . . . . . . 14 (𝑧 = 𝑘 → ((,)‘(𝐹𝑧)) = ((,)‘(𝐹𝑘)))
125124ineq1d 3775 . . . . . . . . . . . . 13 (𝑧 = 𝑘 → (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐹𝑘)) ∩ ((,)‘(𝐺𝑗))))
126125cbvmptv 4678 . . . . . . . . . . . 12 (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))) = (𝑘 ∈ ℕ ↦ (((,)‘(𝐹𝑘)) ∩ ((,)‘(𝐺𝑗))))
127 eqeq1 2614 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (𝑧 = ∅ ↔ 𝑥 = ∅))
128 infeq1 8265 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → inf(𝑧, ℝ*, < ) = inf(𝑥, ℝ*, < ))
129 supeq1 8234 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → sup(𝑧, ℝ*, < ) = sup(𝑥, ℝ*, < ))
130128, 129opeq12d 4348 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → ⟨inf(𝑧, ℝ*, < ), sup(𝑧, ℝ*, < )⟩ = ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩)
131127, 130ifbieq2d 4061 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → if(𝑧 = ∅, ⟨0, 0⟩, ⟨inf(𝑧, ℝ*, < ), sup(𝑧, ℝ*, < )⟩) = if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩))
132131cbvmptv 4678 . . . . . . . . . . . 12 (𝑧 ∈ ran (,) ↦ if(𝑧 = ∅, ⟨0, 0⟩, ⟨inf(𝑧, ℝ*, < ), sup(𝑧, ℝ*, < )⟩)) = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩))
13316, 17, 18, 19, 20, 3, 7, 21, 5, 22, 126, 132uniioombllem2 23157 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → seq1( + , (vol* ∘ (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))))) ⇝ (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))
13495, 133sylan2 490 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑚)) → seq1( + , (vol* ∘ (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))))) ⇝ (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))
135134adantlr 747 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → seq1( + , (vol* ∘ (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))))) ⇝ (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))
1361, 65, 69, 122, 135climi2 14090 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → ∃𝑎 ∈ ℕ ∀𝑛 ∈ (ℤ𝑎)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚))
137 1z 11284 . . . . . . . . 9 1 ∈ ℤ
1381rexuz3 13936 . . . . . . . . 9 (1 ∈ ℤ → (∃𝑎 ∈ ℕ ∀𝑛 ∈ (ℤ𝑎)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚) ↔ ∃𝑎 ∈ ℤ ∀𝑛 ∈ (ℤ𝑎)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))
139137, 138ax-mp 5 . . . . . . . 8 (∃𝑎 ∈ ℕ ∀𝑛 ∈ (ℤ𝑎)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚) ↔ ∃𝑎 ∈ ℤ ∀𝑛 ∈ (ℤ𝑎)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚))
140136, 139sylib 207 . . . . . . 7 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ 𝑗 ∈ (1...𝑚)) → ∃𝑎 ∈ ℤ ∀𝑛 ∈ (ℤ𝑎)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚))
141140ralrimiva 2949 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) → ∀𝑗 ∈ (1...𝑚)∃𝑎 ∈ ℤ ∀𝑛 ∈ (ℤ𝑎)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚))
142 fzfi 12633 . . . . . . 7 (1...𝑚) ∈ Fin
143 rexfiuz 13935 . . . . . . 7 ((1...𝑚) ∈ Fin → (∃𝑎 ∈ ℤ ∀𝑛 ∈ (ℤ𝑎)∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚) ↔ ∀𝑗 ∈ (1...𝑚)∃𝑎 ∈ ℤ ∀𝑛 ∈ (ℤ𝑎)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))
144142, 143ax-mp 5 . . . . . 6 (∃𝑎 ∈ ℤ ∀𝑛 ∈ (ℤ𝑎)∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚) ↔ ∀𝑗 ∈ (1...𝑚)∃𝑎 ∈ ℤ ∀𝑛 ∈ (ℤ𝑎)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚))
145141, 144sylibr 223 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) → ∃𝑎 ∈ ℤ ∀𝑛 ∈ (ℤ𝑎)∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚))
1461rexuz3 13936 . . . . . 6 (1 ∈ ℤ → (∃𝑎 ∈ ℕ ∀𝑛 ∈ (ℤ𝑎)∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚) ↔ ∃𝑎 ∈ ℤ ∀𝑛 ∈ (ℤ𝑎)∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))
147137, 146ax-mp 5 . . . . 5 (∃𝑎 ∈ ℕ ∀𝑛 ∈ (ℤ𝑎)∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚) ↔ ∃𝑎 ∈ ℤ ∀𝑛 ∈ (ℤ𝑎)∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚))
148145, 147sylibr 223 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) → ∃𝑎 ∈ ℕ ∀𝑛 ∈ (ℤ𝑎)∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚))
1491r19.2uz 13939 . . . 4 (∃𝑎 ∈ ℕ ∀𝑛 ∈ (ℤ𝑎)∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚) → ∃𝑛 ∈ ℕ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚))
150148, 149syl 17 . . 3 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) → ∃𝑛 ∈ ℕ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚))
15116adantr 480 . . . . 5 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))) → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
15217adantr 480 . . . . 5 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))) → Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
15320adantr 480 . . . . 5 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))) → (vol*‘𝐸) ∈ ℝ)
1543adantr 480 . . . . 5 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))) → 𝐶 ∈ ℝ+)
1557adantr 480 . . . . 5 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))) → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
15621adantr 480 . . . . 5 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))) → 𝐸 ran ((,) ∘ 𝐺))
15722adantr 480 . . . . 5 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))) → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
158 simprll 798 . . . . 5 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))) → 𝑚 ∈ ℕ)
159 simprlr 799 . . . . 5 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))) → (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)
160 eqid 2610 . . . . 5 (((,) ∘ 𝐺) “ (1...𝑚)) = (((,) ∘ 𝐺) “ (1...𝑚))
161 simprrl 800 . . . . 5 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))) → 𝑛 ∈ ℕ)
162 simprrr 801 . . . . . 6 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))) → ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚))
163 fveq2 6103 . . . . . . . . . . . . . . 15 (𝑖 = 𝑧 → (𝐹𝑖) = (𝐹𝑧))
164163fveq2d 6107 . . . . . . . . . . . . . 14 (𝑖 = 𝑧 → ((,)‘(𝐹𝑖)) = ((,)‘(𝐹𝑧)))
165164ineq1d 3775 . . . . . . . . . . . . 13 (𝑖 = 𝑧 → (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))))
166165fveq2d 6107 . . . . . . . . . . . 12 (𝑖 = 𝑧 → (vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = (vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))))
167166cbvsumv 14274 . . . . . . . . . . 11 Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = Σ𝑧 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))))
168 fveq2 6103 . . . . . . . . . . . . . . 15 (𝑗 = 𝑘 → (𝐺𝑗) = (𝐺𝑘))
169168fveq2d 6107 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → ((,)‘(𝐺𝑗)) = ((,)‘(𝐺𝑘)))
170169ineq2d 3776 . . . . . . . . . . . . 13 (𝑗 = 𝑘 → (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑘))))
171170fveq2d 6107 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))) = (vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑘)))))
172171sumeq2sdv 14282 . . . . . . . . . . 11 (𝑗 = 𝑘 → Σ𝑧 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑗)))) = Σ𝑧 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑘)))))
173167, 172syl5eq 2656 . . . . . . . . . 10 (𝑗 = 𝑘 → Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = Σ𝑧 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑘)))))
174169ineq1d 3775 . . . . . . . . . . 11 (𝑗 = 𝑘 → (((,)‘(𝐺𝑗)) ∩ 𝐴) = (((,)‘(𝐺𝑘)) ∩ 𝐴))
175174fveq2d 6107 . . . . . . . . . 10 (𝑗 = 𝑘 → (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) = (vol*‘(((,)‘(𝐺𝑘)) ∩ 𝐴)))
176173, 175oveq12d 6567 . . . . . . . . 9 (𝑗 = 𝑘 → (Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴))) = (Σ𝑧 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑘)))) − (vol*‘(((,)‘(𝐺𝑘)) ∩ 𝐴))))
177176fveq2d 6107 . . . . . . . 8 (𝑗 = 𝑘 → (abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) = (abs‘(Σ𝑧 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑘)))) − (vol*‘(((,)‘(𝐺𝑘)) ∩ 𝐴)))))
178177breq1d 4593 . . . . . . 7 (𝑗 = 𝑘 → ((abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚) ↔ (abs‘(Σ𝑧 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑘)))) − (vol*‘(((,)‘(𝐺𝑘)) ∩ 𝐴)))) < (𝐶 / 𝑚)))
179178cbvralv 3147 . . . . . 6 (∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚) ↔ ∀𝑘 ∈ (1...𝑚)(abs‘(Σ𝑧 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑘)))) − (vol*‘(((,)‘(𝐺𝑘)) ∩ 𝐴)))) < (𝐶 / 𝑚))
180162, 179sylib 207 . . . . 5 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))) → ∀𝑘 ∈ (1...𝑚)(abs‘(Σ𝑧 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝑘)))) − (vol*‘(((,)‘(𝐺𝑘)) ∩ 𝐴)))) < (𝐶 / 𝑚))
181 eqid 2610 . . . . 5 (((,) ∘ 𝐹) “ (1...𝑛)) = (((,) ∘ 𝐹) “ (1...𝑛))
182151, 152, 18, 19, 153, 154, 155, 156, 5, 157, 158, 159, 160, 161, 180, 181uniioombllem5 23161 . . . 4 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚)))) → ((vol*‘(𝐸𝐴)) + (vol*‘(𝐸𝐴))) ≤ ((vol*‘𝐸) + (4 · 𝐶)))
183182anassrs 678 . . 3 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) ∧ (𝑛 ∈ ℕ ∧ ∀𝑗 ∈ (1...𝑚)(abs‘(Σ𝑖 ∈ (1...𝑛)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑚))) → ((vol*‘(𝐸𝐴)) + (vol*‘(𝐸𝐴))) ≤ ((vol*‘𝐸) + (4 · 𝐶)))
184150, 183rexlimddv 3017 . 2 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (abs‘((𝑇𝑚) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)) → ((vol*‘(𝐸𝐴)) + (vol*‘(𝐸𝐴))) ≤ ((vol*‘𝐸) + (4 · 𝐶)))
18564, 184rexlimddv 3017 1 (𝜑 → ((vol*‘(𝐸𝐴)) + (vol*‘(𝐸𝐴))) ≤ ((vol*‘𝐸) + (4 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  Vcvv 3173  cdif 3537  cin 3539  wss 3540  c0 3874  ifcif 4036  cop 4131   cuni 4372  Disj wdisj 4553   class class class wbr 4583  cmpt 4643   × cxp 5036  dom cdm 5038  ran crn 5039  cima 5041  ccom 5042   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058  Fincfn 7841  supcsup 8229  infcinf 8230  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  +∞cpnf 9950  *cxr 9952   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  cn 10897  4c4 10949  cz 11254  cuz 11563  +crp 11708  (,)cioo 12046  [,)cico 12048  ...cfz 12197  seqcseq 12663  abscabs 13822  cli 14063  Σcsu 14264  vol*covol 23038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-rest 15906  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-cmp 21000  df-ovol 23040  df-vol 23041
This theorem is referenced by:  uniioombl  23163
  Copyright terms: Public domain W3C validator