Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0reuzb Structured version   Visualization version   GIF version

Theorem sge0reuzb 39341
Description: Value of the generalized sum of uniformly bounded nonnegative reals, when the domain is a set of upper integers. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
sge0reuzb.k 𝑘𝜑
sge0reuzb.p 𝑥𝜑
sge0reuzb.m (𝜑𝑀 ∈ ℤ)
sge0reuzb.z 𝑍 = (ℤ𝑀)
sge0reuzb.b ((𝜑𝑘𝑍) → 𝐵 ∈ (0[,)+∞))
sge0reuzb.x (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥)
Assertion
Ref Expression
sge0reuzb (𝜑 → (Σ^‘(𝑘𝑍𝐵)) = sup(ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ, < ))
Distinct variable groups:   𝐵,𝑛,𝑥   𝑘,𝑀,𝑛,𝑥   𝑘,𝑍,𝑛,𝑥   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑘)   𝐵(𝑘)

Proof of Theorem sge0reuzb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sge0reuzb.k . . 3 𝑘𝜑
2 sge0reuzb.m . . 3 (𝜑𝑀 ∈ ℤ)
3 sge0reuzb.z . . 3 𝑍 = (ℤ𝑀)
4 sge0reuzb.b . . 3 ((𝜑𝑘𝑍) → 𝐵 ∈ (0[,)+∞))
51, 2, 3, 4sge0reuz 39340 . 2 (𝜑 → (Σ^‘(𝑘𝑍𝐵)) = sup(ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ*, < ))
6 nfv 1830 . . . 4 𝑛𝜑
7 eqid 2610 . . . 4 (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) = (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)
8 nfv 1830 . . . . . 6 𝑘 𝑛𝑍
91, 8nfan 1816 . . . . 5 𝑘(𝜑𝑛𝑍)
10 fzfid 12634 . . . . 5 ((𝜑𝑛𝑍) → (𝑀...𝑛) ∈ Fin)
11 elfzuz 12209 . . . . . . . . 9 (𝑘 ∈ (𝑀...𝑛) → 𝑘 ∈ (ℤ𝑀))
1211, 3syl6eleqr 2699 . . . . . . . 8 (𝑘 ∈ (𝑀...𝑛) → 𝑘𝑍)
1312adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...𝑛)) → 𝑘𝑍)
14 rge0ssre 12151 . . . . . . . 8 (0[,)+∞) ⊆ ℝ
1514, 4sseldi 3566 . . . . . . 7 ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ)
1613, 15syldan 486 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑛)) → 𝐵 ∈ ℝ)
1716adantlr 747 . . . . 5 (((𝜑𝑛𝑍) ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝐵 ∈ ℝ)
189, 10, 17fsumreclf 38643 . . . 4 ((𝜑𝑛𝑍) → Σ𝑘 ∈ (𝑀...𝑛)𝐵 ∈ ℝ)
196, 7, 18rnmptssd 38380 . . 3 (𝜑 → ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ⊆ ℝ)
20 uzid 11578 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
212, 20syl 17 . . . . . . 7 (𝜑𝑀 ∈ (ℤ𝑀))
2221, 3syl6eleqr 2699 . . . . . 6 (𝜑𝑀𝑍)
23 eqidd 2611 . . . . . 6 (𝜑 → Σ𝑘 ∈ (𝑀...𝑀)𝐵 = Σ𝑘 ∈ (𝑀...𝑀)𝐵)
24 oveq2 6557 . . . . . . . . 9 (𝑛 = 𝑀 → (𝑀...𝑛) = (𝑀...𝑀))
2524sumeq1d 14279 . . . . . . . 8 (𝑛 = 𝑀 → Σ𝑘 ∈ (𝑀...𝑛)𝐵 = Σ𝑘 ∈ (𝑀...𝑀)𝐵)
2625eqeq2d 2620 . . . . . . 7 (𝑛 = 𝑀 → (Σ𝑘 ∈ (𝑀...𝑀)𝐵 = Σ𝑘 ∈ (𝑀...𝑛)𝐵 ↔ Σ𝑘 ∈ (𝑀...𝑀)𝐵 = Σ𝑘 ∈ (𝑀...𝑀)𝐵))
2726rspcev 3282 . . . . . 6 ((𝑀𝑍 ∧ Σ𝑘 ∈ (𝑀...𝑀)𝐵 = Σ𝑘 ∈ (𝑀...𝑀)𝐵) → ∃𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑀)𝐵 = Σ𝑘 ∈ (𝑀...𝑛)𝐵)
2822, 23, 27syl2anc 691 . . . . 5 (𝜑 → ∃𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑀)𝐵 = Σ𝑘 ∈ (𝑀...𝑛)𝐵)
29 sumex 14266 . . . . . 6 Σ𝑘 ∈ (𝑀...𝑀)𝐵 ∈ V
3029a1i 11 . . . . 5 (𝜑 → Σ𝑘 ∈ (𝑀...𝑀)𝐵 ∈ V)
317, 28, 30elrnmptd 38361 . . . 4 (𝜑 → Σ𝑘 ∈ (𝑀...𝑀)𝐵 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵))
32 ne0i 3880 . . . 4 𝑘 ∈ (𝑀...𝑀)𝐵 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) → ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ≠ ∅)
3331, 32syl 17 . . 3 (𝜑 → ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ≠ ∅)
34 sge0reuzb.x . . . 4 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥)
35 sge0reuzb.p . . . . 5 𝑥𝜑
36 vex 3176 . . . . . . . . . . . 12 𝑦 ∈ V
377elrnmpt 5293 . . . . . . . . . . . 12 (𝑦 ∈ V → (𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ↔ ∃𝑛𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵))
3836, 37ax-mp 5 . . . . . . . . . . 11 (𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ↔ ∃𝑛𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵)
3938biimpi 205 . . . . . . . . . 10 (𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) → ∃𝑛𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵)
4039adantl 481 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ ∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥) ∧ 𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)) → ∃𝑛𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵)
41 nfv 1830 . . . . . . . . . . . 12 𝑛(𝜑𝑥 ∈ ℝ)
42 nfra1 2925 . . . . . . . . . . . 12 𝑛𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥
4341, 42nfan 1816 . . . . . . . . . . 11 𝑛((𝜑𝑥 ∈ ℝ) ∧ ∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥)
44 nfv 1830 . . . . . . . . . . 11 𝑛 𝑦𝑥
45 rspa 2914 . . . . . . . . . . . . . 14 ((∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥𝑛𝑍) → Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥)
46 simpr 476 . . . . . . . . . . . . . . . 16 ((Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵) → 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵)
47 simpl 472 . . . . . . . . . . . . . . . 16 ((Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵) → Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥)
4846, 47eqbrtrd 4605 . . . . . . . . . . . . . . 15 ((Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵) → 𝑦𝑥)
4948ex 449 . . . . . . . . . . . . . 14 𝑘 ∈ (𝑀...𝑛)𝐵𝑥 → (𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑦𝑥))
5045, 49syl 17 . . . . . . . . . . . . 13 ((∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥𝑛𝑍) → (𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑦𝑥))
5150ex 449 . . . . . . . . . . . 12 (∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥 → (𝑛𝑍 → (𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑦𝑥)))
5251adantl 481 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥) → (𝑛𝑍 → (𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑦𝑥)))
5343, 44, 52rexlimd 3008 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥) → (∃𝑛𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑦𝑥))
5453adantr 480 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ ∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥) ∧ 𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)) → (∃𝑛𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑦𝑥))
5540, 54mpd 15 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ ∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥) ∧ 𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)) → 𝑦𝑥)
5655ralrimiva 2949 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥) → ∀𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑥)
5756ex 449 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥 → ∀𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑥))
5857ex 449 . . . . 5 (𝜑 → (𝑥 ∈ ℝ → (∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥 → ∀𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑥)))
5935, 58reximdai 2995 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑥))
6034, 59mpd 15 . . 3 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑥)
61 supxrre 12029 . . 3 ((ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ⊆ ℝ ∧ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑥) → sup(ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ*, < ) = sup(ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ, < ))
6219, 33, 60, 61syl3anc 1318 . 2 (𝜑 → sup(ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ*, < ) = sup(ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ, < ))
635, 62eqtrd 2644 1 (𝜑 → (Σ^‘(𝑘𝑍𝐵)) = sup(ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wnf 1699  wcel 1977  wne 2780  wral 2896  wrex 2897  Vcvv 3173  wss 3540  c0 3874   class class class wbr 4583  cmpt 4643  ran crn 5039  cfv 5804  (class class class)co 6549  supcsup 8229  cr 9814  0cc0 9815  +∞cpnf 9950  *cxr 9952   < clt 9953  cle 9954  cz 11254  cuz 11563  [,)cico 12048  ...cfz 12197  Σcsu 14264  Σ^csumge0 39255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-sumge0 39256
This theorem is referenced by:  meaiuninclem  39373
  Copyright terms: Public domain W3C validator