Step | Hyp | Ref
| Expression |
1 | | ressxr 9962 |
. . . . 5
⊢ ℝ
⊆ ℝ* |
2 | | sstr 3576 |
. . . . 5
⊢ ((𝐴 ⊆ ℝ ∧ ℝ
⊆ ℝ*) → 𝐴 ⊆
ℝ*) |
3 | 1, 2 | mpan2 703 |
. . . 4
⊢ (𝐴 ⊆ ℝ → 𝐴 ⊆
ℝ*) |
4 | | supxrcl 12017 |
. . . . . . 7
⊢ (𝐴 ⊆ ℝ*
→ sup(𝐴,
ℝ*, < ) ∈ ℝ*) |
5 | | pnfxr 9971 |
. . . . . . . . . 10
⊢ +∞
∈ ℝ* |
6 | | xrltne 11870 |
. . . . . . . . . 10
⊢
((sup(𝐴,
ℝ*, < ) ∈ ℝ* ∧ +∞ ∈
ℝ* ∧ sup(𝐴, ℝ*, < ) < +∞)
→ +∞ ≠ sup(𝐴,
ℝ*, < )) |
7 | 5, 6 | mp3an2 1404 |
. . . . . . . . 9
⊢
((sup(𝐴,
ℝ*, < ) ∈ ℝ* ∧ sup(𝐴, ℝ*, < )
< +∞) → +∞ ≠ sup(𝐴, ℝ*, <
)) |
8 | 7 | necomd 2837 |
. . . . . . . 8
⊢
((sup(𝐴,
ℝ*, < ) ∈ ℝ* ∧ sup(𝐴, ℝ*, < )
< +∞) → sup(𝐴, ℝ*, < ) ≠
+∞) |
9 | 8 | ex 449 |
. . . . . . 7
⊢
(sup(𝐴,
ℝ*, < ) ∈ ℝ* → (sup(𝐴, ℝ*, < )
< +∞ → sup(𝐴,
ℝ*, < ) ≠ +∞)) |
10 | 4, 9 | syl 17 |
. . . . . 6
⊢ (𝐴 ⊆ ℝ*
→ (sup(𝐴,
ℝ*, < ) < +∞ → sup(𝐴, ℝ*, < ) ≠
+∞)) |
11 | | supxrunb2 12022 |
. . . . . . . . 9
⊢ (𝐴 ⊆ ℝ*
→ (∀𝑥 ∈
ℝ ∃𝑦 ∈
𝐴 𝑥 < 𝑦 ↔ sup(𝐴, ℝ*, < ) =
+∞)) |
12 | | ssel2 3563 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ⊆ ℝ*
∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℝ*) |
13 | 12 | adantlr 747 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ⊆ ℝ*
∧ 𝑥 ∈ ℝ)
∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℝ*) |
14 | | rexr 9964 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℝ → 𝑥 ∈
ℝ*) |
15 | 14 | ad2antlr 759 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ⊆ ℝ*
∧ 𝑥 ∈ ℝ)
∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ ℝ*) |
16 | | xrlenlt 9982 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℝ*
∧ 𝑥 ∈
ℝ*) → (𝑦 ≤ 𝑥 ↔ ¬ 𝑥 < 𝑦)) |
17 | 16 | con2bid 343 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ℝ*
∧ 𝑥 ∈
ℝ*) → (𝑥 < 𝑦 ↔ ¬ 𝑦 ≤ 𝑥)) |
18 | 13, 15, 17 | syl2anc 691 |
. . . . . . . . . . . 12
⊢ (((𝐴 ⊆ ℝ*
∧ 𝑥 ∈ ℝ)
∧ 𝑦 ∈ 𝐴) → (𝑥 < 𝑦 ↔ ¬ 𝑦 ≤ 𝑥)) |
19 | 18 | rexbidva 3031 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆ ℝ*
∧ 𝑥 ∈ ℝ)
→ (∃𝑦 ∈
𝐴 𝑥 < 𝑦 ↔ ∃𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑥)) |
20 | | rexnal 2978 |
. . . . . . . . . . 11
⊢
(∃𝑦 ∈
𝐴 ¬ 𝑦 ≤ 𝑥 ↔ ¬ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
21 | 19, 20 | syl6bb 275 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ ℝ*
∧ 𝑥 ∈ ℝ)
→ (∃𝑦 ∈
𝐴 𝑥 < 𝑦 ↔ ¬ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) |
22 | 21 | ralbidva 2968 |
. . . . . . . . 9
⊢ (𝐴 ⊆ ℝ*
→ (∀𝑥 ∈
ℝ ∃𝑦 ∈
𝐴 𝑥 < 𝑦 ↔ ∀𝑥 ∈ ℝ ¬ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) |
23 | 11, 22 | bitr3d 269 |
. . . . . . . 8
⊢ (𝐴 ⊆ ℝ*
→ (sup(𝐴,
ℝ*, < ) = +∞ ↔ ∀𝑥 ∈ ℝ ¬ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) |
24 | | ralnex 2975 |
. . . . . . . 8
⊢
(∀𝑥 ∈
ℝ ¬ ∀𝑦
∈ 𝐴 𝑦 ≤ 𝑥 ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
25 | 23, 24 | syl6bb 275 |
. . . . . . 7
⊢ (𝐴 ⊆ ℝ*
→ (sup(𝐴,
ℝ*, < ) = +∞ ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) |
26 | 25 | necon2abid 2824 |
. . . . . 6
⊢ (𝐴 ⊆ ℝ*
→ (∃𝑥 ∈
ℝ ∀𝑦 ∈
𝐴 𝑦 ≤ 𝑥 ↔ sup(𝐴, ℝ*, < ) ≠
+∞)) |
27 | 10, 26 | sylibrd 248 |
. . . . 5
⊢ (𝐴 ⊆ ℝ*
→ (sup(𝐴,
ℝ*, < ) < +∞ → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) |
28 | 27 | imp 444 |
. . . 4
⊢ ((𝐴 ⊆ ℝ*
∧ sup(𝐴,
ℝ*, < ) < +∞) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
29 | 3, 28 | sylan 487 |
. . 3
⊢ ((𝐴 ⊆ ℝ ∧ sup(𝐴, ℝ*, < )
< +∞) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
30 | 29 | 3adant2 1073 |
. 2
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ sup(𝐴, ℝ*, < )
< +∞) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
31 | | supxrre 12029 |
. . 3
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → sup(𝐴, ℝ*, < ) = sup(𝐴, ℝ, <
)) |
32 | | suprcl 10862 |
. . 3
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → sup(𝐴, ℝ, < ) ∈
ℝ) |
33 | 31, 32 | eqeltrd 2688 |
. 2
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → sup(𝐴, ℝ*, < ) ∈
ℝ) |
34 | 30, 33 | syld3an3 1363 |
1
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ sup(𝐴, ℝ*, < )
< +∞) → sup(𝐴, ℝ*, < ) ∈
ℝ) |