MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supxrbnd Structured version   Visualization version   GIF version

Theorem supxrbnd 12030
Description: The supremum of a bounded-above nonempty set of reals is real. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
supxrbnd ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ sup(𝐴, ℝ*, < ) < +∞) → sup(𝐴, ℝ*, < ) ∈ ℝ)

Proof of Theorem supxrbnd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ressxr 9962 . . . . 5 ℝ ⊆ ℝ*
2 sstr 3576 . . . . 5 ((𝐴 ⊆ ℝ ∧ ℝ ⊆ ℝ*) → 𝐴 ⊆ ℝ*)
31, 2mpan2 703 . . . 4 (𝐴 ⊆ ℝ → 𝐴 ⊆ ℝ*)
4 supxrcl 12017 . . . . . . 7 (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*)
5 pnfxr 9971 . . . . . . . . . 10 +∞ ∈ ℝ*
6 xrltne 11870 . . . . . . . . . 10 ((sup(𝐴, ℝ*, < ) ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ sup(𝐴, ℝ*, < ) < +∞) → +∞ ≠ sup(𝐴, ℝ*, < ))
75, 6mp3an2 1404 . . . . . . . . 9 ((sup(𝐴, ℝ*, < ) ∈ ℝ* ∧ sup(𝐴, ℝ*, < ) < +∞) → +∞ ≠ sup(𝐴, ℝ*, < ))
87necomd 2837 . . . . . . . 8 ((sup(𝐴, ℝ*, < ) ∈ ℝ* ∧ sup(𝐴, ℝ*, < ) < +∞) → sup(𝐴, ℝ*, < ) ≠ +∞)
98ex 449 . . . . . . 7 (sup(𝐴, ℝ*, < ) ∈ ℝ* → (sup(𝐴, ℝ*, < ) < +∞ → sup(𝐴, ℝ*, < ) ≠ +∞))
104, 9syl 17 . . . . . 6 (𝐴 ⊆ ℝ* → (sup(𝐴, ℝ*, < ) < +∞ → sup(𝐴, ℝ*, < ) ≠ +∞))
11 supxrunb2 12022 . . . . . . . . 9 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦 ↔ sup(𝐴, ℝ*, < ) = +∞))
12 ssel2 3563 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℝ*𝑦𝐴) → 𝑦 ∈ ℝ*)
1312adantlr 747 . . . . . . . . . . . . 13 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) → 𝑦 ∈ ℝ*)
14 rexr 9964 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
1514ad2antlr 759 . . . . . . . . . . . . 13 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) → 𝑥 ∈ ℝ*)
16 xrlenlt 9982 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ*𝑥 ∈ ℝ*) → (𝑦𝑥 ↔ ¬ 𝑥 < 𝑦))
1716con2bid 343 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ*𝑥 ∈ ℝ*) → (𝑥 < 𝑦 ↔ ¬ 𝑦𝑥))
1813, 15, 17syl2anc 691 . . . . . . . . . . . 12 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) → (𝑥 < 𝑦 ↔ ¬ 𝑦𝑥))
1918rexbidva 3031 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) → (∃𝑦𝐴 𝑥 < 𝑦 ↔ ∃𝑦𝐴 ¬ 𝑦𝑥))
20 rexnal 2978 . . . . . . . . . . 11 (∃𝑦𝐴 ¬ 𝑦𝑥 ↔ ¬ ∀𝑦𝐴 𝑦𝑥)
2119, 20syl6bb 275 . . . . . . . . . 10 ((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) → (∃𝑦𝐴 𝑥 < 𝑦 ↔ ¬ ∀𝑦𝐴 𝑦𝑥))
2221ralbidva 2968 . . . . . . . . 9 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦 ↔ ∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑦𝑥))
2311, 22bitr3d 269 . . . . . . . 8 (𝐴 ⊆ ℝ* → (sup(𝐴, ℝ*, < ) = +∞ ↔ ∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑦𝑥))
24 ralnex 2975 . . . . . . . 8 (∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑦𝑥 ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
2523, 24syl6bb 275 . . . . . . 7 (𝐴 ⊆ ℝ* → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
2625necon2abid 2824 . . . . . 6 (𝐴 ⊆ ℝ* → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥 ↔ sup(𝐴, ℝ*, < ) ≠ +∞))
2710, 26sylibrd 248 . . . . 5 (𝐴 ⊆ ℝ* → (sup(𝐴, ℝ*, < ) < +∞ → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
2827imp 444 . . . 4 ((𝐴 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) < +∞) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
293, 28sylan 487 . . 3 ((𝐴 ⊆ ℝ ∧ sup(𝐴, ℝ*, < ) < +∞) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
30293adant2 1073 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ sup(𝐴, ℝ*, < ) < +∞) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
31 supxrre 12029 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ*, < ) = sup(𝐴, ℝ, < ))
32 suprcl 10862 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ∈ ℝ)
3331, 32eqeltrd 2688 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ*, < ) ∈ ℝ)
3430, 33syld3an3 1363 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ sup(𝐴, ℝ*, < ) < +∞) → sup(𝐴, ℝ*, < ) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  wss 3540  c0 3874   class class class wbr 4583  supcsup 8229  cr 9814  +∞cpnf 9950  *cxr 9952   < clt 9953  cle 9954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148
This theorem is referenced by:  supxrgtmnf  12031  ovolunlem1  23072  uniioombllem1  23155
  Copyright terms: Public domain W3C validator