MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supxrbnd Structured version   Visualization version   Unicode version

Theorem supxrbnd 11614
Description: The supremum of a bounded-above nonempty set of reals is real. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
supxrbnd  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  sup ( A ,  RR* ,  <  )  < +oo )  ->  sup ( A ,  RR* ,  <  )  e.  RR )

Proof of Theorem supxrbnd
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ressxr 9684 . . . . 5  |-  RR  C_  RR*
2 sstr 3440 . . . . 5  |-  ( ( A  C_  RR  /\  RR  C_ 
RR* )  ->  A  C_ 
RR* )
31, 2mpan2 677 . . . 4  |-  ( A 
C_  RR  ->  A  C_  RR* )
4 supxrcl 11600 . . . . . . 7  |-  ( A 
C_  RR*  ->  sup ( A ,  RR* ,  <  )  e.  RR* )
5 pnfxr 11412 . . . . . . . . . 10  |- +oo  e.  RR*
6 xrltne 11460 . . . . . . . . . 10  |-  ( ( sup ( A ,  RR* ,  <  )  e. 
RR*  /\ +oo  e.  RR*  /\ 
sup ( A ,  RR* ,  <  )  < +oo )  -> +oo  =/=  sup ( A ,  RR* ,  <  ) )
75, 6mp3an2 1352 . . . . . . . . 9  |-  ( ( sup ( A ,  RR* ,  <  )  e. 
RR*  /\  sup ( A ,  RR* ,  <  )  < +oo )  -> +oo  =/=  sup ( A ,  RR* ,  <  ) )
87necomd 2679 . . . . . . . 8  |-  ( ( sup ( A ,  RR* ,  <  )  e. 
RR*  /\  sup ( A ,  RR* ,  <  )  < +oo )  ->  sup ( A ,  RR* ,  <  )  =/= +oo )
98ex 436 . . . . . . 7  |-  ( sup ( A ,  RR* ,  <  )  e.  RR*  ->  ( sup ( A ,  RR* ,  <  )  < +oo  ->  sup ( A ,  RR* ,  <  )  =/= +oo ) )
104, 9syl 17 . . . . . 6  |-  ( A 
C_  RR*  ->  ( sup ( A ,  RR* ,  <  )  < +oo  ->  sup ( A ,  RR* ,  <  )  =/= +oo ) )
11 supxrunb2 11606 . . . . . . . . 9  |-  ( A 
C_  RR*  ->  ( A. x  e.  RR  E. y  e.  A  x  <  y  <->  sup ( A ,  RR* ,  <  )  = +oo ) )
12 ssel2 3427 . . . . . . . . . . . . . 14  |-  ( ( A  C_  RR*  /\  y  e.  A )  ->  y  e.  RR* )
1312adantlr 721 . . . . . . . . . . . . 13  |-  ( ( ( A  C_  RR*  /\  x  e.  RR )  /\  y  e.  A )  ->  y  e.  RR* )
14 rexr 9686 . . . . . . . . . . . . . 14  |-  ( x  e.  RR  ->  x  e.  RR* )
1514ad2antlr 733 . . . . . . . . . . . . 13  |-  ( ( ( A  C_  RR*  /\  x  e.  RR )  /\  y  e.  A )  ->  x  e.  RR* )
16 xrlenlt 9699 . . . . . . . . . . . . . 14  |-  ( ( y  e.  RR*  /\  x  e.  RR* )  ->  (
y  <_  x  <->  -.  x  <  y ) )
1716con2bid 331 . . . . . . . . . . . . 13  |-  ( ( y  e.  RR*  /\  x  e.  RR* )  ->  (
x  <  y  <->  -.  y  <_  x ) )
1813, 15, 17syl2anc 667 . . . . . . . . . . . 12  |-  ( ( ( A  C_  RR*  /\  x  e.  RR )  /\  y  e.  A )  ->  (
x  <  y  <->  -.  y  <_  x ) )
1918rexbidva 2898 . . . . . . . . . . 11  |-  ( ( A  C_  RR*  /\  x  e.  RR )  ->  ( E. y  e.  A  x  <  y  <->  E. y  e.  A  -.  y  <_  x ) )
20 rexnal 2836 . . . . . . . . . . 11  |-  ( E. y  e.  A  -.  y  <_  x  <->  -.  A. y  e.  A  y  <_  x )
2119, 20syl6bb 265 . . . . . . . . . 10  |-  ( ( A  C_  RR*  /\  x  e.  RR )  ->  ( E. y  e.  A  x  <  y  <->  -.  A. y  e.  A  y  <_  x ) )
2221ralbidva 2824 . . . . . . . . 9  |-  ( A 
C_  RR*  ->  ( A. x  e.  RR  E. y  e.  A  x  <  y  <->  A. x  e.  RR  -.  A. y  e.  A  y  <_  x ) )
2311, 22bitr3d 259 . . . . . . . 8  |-  ( A 
C_  RR*  ->  ( sup ( A ,  RR* ,  <  )  = +oo  <->  A. x  e.  RR  -.  A. y  e.  A  y  <_  x ) )
24 ralnex 2834 . . . . . . . 8  |-  ( A. x  e.  RR  -.  A. y  e.  A  y  <_  x  <->  -.  E. x  e.  RR  A. y  e.  A  y  <_  x
)
2523, 24syl6bb 265 . . . . . . 7  |-  ( A 
C_  RR*  ->  ( sup ( A ,  RR* ,  <  )  = +oo  <->  -.  E. x  e.  RR  A. y  e.  A  y  <_  x
) )
2625necon2abid 2666 . . . . . 6  |-  ( A 
C_  RR*  ->  ( E. x  e.  RR  A. y  e.  A  y  <_  x  <->  sup ( A ,  RR* ,  <  )  =/= +oo ) )
2710, 26sylibrd 238 . . . . 5  |-  ( A 
C_  RR*  ->  ( sup ( A ,  RR* ,  <  )  < +oo  ->  E. x  e.  RR  A. y  e.  A  y  <_  x
) )
2827imp 431 . . . 4  |-  ( ( A  C_  RR*  /\  sup ( A ,  RR* ,  <  )  < +oo )  ->  E. x  e.  RR  A. y  e.  A  y  <_  x
)
293, 28sylan 474 . . 3  |-  ( ( A  C_  RR  /\  sup ( A ,  RR* ,  <  )  < +oo )  ->  E. x  e.  RR  A. y  e.  A  y  <_  x
)
30293adant2 1027 . 2  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  sup ( A ,  RR* ,  <  )  < +oo )  ->  E. x  e.  RR  A. y  e.  A  y  <_  x
)
31 supxrre 11613 . . 3  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  sup ( A ,  RR* ,  <  )  =  sup ( A ,  RR ,  <  ) )
32 suprcl 10569 . . 3  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  sup ( A ,  RR ,  <  )  e.  RR )
3331, 32eqeltrd 2529 . 2  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  sup ( A ,  RR* ,  <  )  e.  RR )
3430, 33syld3an3 1313 1  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  sup ( A ,  RR* ,  <  )  < +oo )  ->  sup ( A ,  RR* ,  <  )  e.  RR )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 985    = wceq 1444    e. wcel 1887    =/= wne 2622   A.wral 2737   E.wrex 2738    C_ wss 3404   (/)c0 3731   class class class wbr 4402   supcsup 7954   RRcr 9538   +oocpnf 9672   RR*cxr 9674    < clt 9675    <_ cle 9676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-op 3975  df-uni 4199  df-br 4403  df-opab 4462  df-mpt 4463  df-id 4749  df-po 4755  df-so 4756  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-er 7363  df-en 7570  df-dom 7571  df-sdom 7572  df-sup 7956  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863
This theorem is referenced by:  supxrgtmnf  11615  ovolunlem1  22450  uniioombllem1  22538
  Copyright terms: Public domain W3C validator