MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioombllem2 Structured version   Visualization version   GIF version

Theorem uniioombllem2 23157
Description: Lemma for uniioombl 23163. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by Mario Carneiro, 11-Dec-2016.) (Revised by AV, 13-Sep-2020.)
Hypotheses
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.2 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
uniioombl.3 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
uniioombl.a 𝐴 = ran ((,) ∘ 𝐹)
uniioombl.e (𝜑 → (vol*‘𝐸) ∈ ℝ)
uniioombl.c (𝜑𝐶 ∈ ℝ+)
uniioombl.g (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.s (𝜑𝐸 ran ((,) ∘ 𝐺))
uniioombl.t 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
uniioombl.v (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
uniioombllem2.h 𝐻 = (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))
uniioombllem2.k 𝐾 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩))
Assertion
Ref Expression
uniioombllem2 ((𝜑𝐽 ∈ ℕ) → seq1( + , (vol* ∘ 𝐻)) ⇝ (vol*‘(((,)‘(𝐺𝐽)) ∩ 𝐴)))
Distinct variable groups:   𝑥,𝑧,𝐹   𝑥,𝐺,𝑧   𝑥,𝐾,𝑧   𝑥,𝐴,𝑧   𝑥,𝐶,𝑧   𝑥,𝐻,𝑧   𝑥,𝐽,𝑧   𝜑,𝑥,𝑧   𝑥,𝑇,𝑧
Allowed substitution hints:   𝑆(𝑥,𝑧)   𝐸(𝑥,𝑧)

Proof of Theorem uniioombllem2
Dummy variables 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 11599 . . 3 ℕ = (ℤ‘1)
2 eqid 2610 . . 3 seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) = seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))
3 1zzd 11285 . . 3 ((𝜑𝐽 ∈ ℕ) → 1 ∈ ℤ)
4 eqidd 2611 . . 3 (((𝜑𝐽 ∈ ℕ) ∧ 𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ (𝐾𝐻))‘𝑛) = (((abs ∘ − ) ∘ (𝐾𝐻))‘𝑛))
5 uniioombl.1 . . . . . . . . . . 11 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
6 uniioombl.2 . . . . . . . . . . 11 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
7 uniioombl.3 . . . . . . . . . . 11 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
8 uniioombl.a . . . . . . . . . . 11 𝐴 = ran ((,) ∘ 𝐹)
9 uniioombl.e . . . . . . . . . . 11 (𝜑 → (vol*‘𝐸) ∈ ℝ)
10 uniioombl.c . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ+)
11 uniioombl.g . . . . . . . . . . 11 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
12 uniioombl.s . . . . . . . . . . 11 (𝜑𝐸 ran ((,) ∘ 𝐺))
13 uniioombl.t . . . . . . . . . . 11 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
14 uniioombl.v . . . . . . . . . . 11 (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
155, 6, 7, 8, 9, 10, 11, 12, 13, 14uniioombllem2a 23156 . . . . . . . . . 10 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ∈ ran (,))
16 inss2 3796 . . . . . . . . . . . . 13 (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ⊆ ((,)‘(𝐺𝐽))
1716a1i 11 . . . . . . . . . . . 12 ((𝜑𝐽 ∈ ℕ) → (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ⊆ ((,)‘(𝐺𝐽)))
18 inss2 3796 . . . . . . . . . . . . . . . . 17 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
1911ffvelrnda 6267 . . . . . . . . . . . . . . . . 17 ((𝜑𝐽 ∈ ℕ) → (𝐺𝐽) ∈ ( ≤ ∩ (ℝ × ℝ)))
2018, 19sseldi 3566 . . . . . . . . . . . . . . . 16 ((𝜑𝐽 ∈ ℕ) → (𝐺𝐽) ∈ (ℝ × ℝ))
21 1st2nd2 7096 . . . . . . . . . . . . . . . 16 ((𝐺𝐽) ∈ (ℝ × ℝ) → (𝐺𝐽) = ⟨(1st ‘(𝐺𝐽)), (2nd ‘(𝐺𝐽))⟩)
2220, 21syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝐽 ∈ ℕ) → (𝐺𝐽) = ⟨(1st ‘(𝐺𝐽)), (2nd ‘(𝐺𝐽))⟩)
2322fveq2d 6107 . . . . . . . . . . . . . 14 ((𝜑𝐽 ∈ ℕ) → ((,)‘(𝐺𝐽)) = ((,)‘⟨(1st ‘(𝐺𝐽)), (2nd ‘(𝐺𝐽))⟩))
24 df-ov 6552 . . . . . . . . . . . . . 14 ((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽))) = ((,)‘⟨(1st ‘(𝐺𝐽)), (2nd ‘(𝐺𝐽))⟩)
2523, 24syl6eqr 2662 . . . . . . . . . . . . 13 ((𝜑𝐽 ∈ ℕ) → ((,)‘(𝐺𝐽)) = ((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽))))
26 ioossre 12106 . . . . . . . . . . . . 13 ((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽))) ⊆ ℝ
2725, 26syl6eqss 3618 . . . . . . . . . . . 12 ((𝜑𝐽 ∈ ℕ) → ((,)‘(𝐺𝐽)) ⊆ ℝ)
2825fveq2d 6107 . . . . . . . . . . . . . 14 ((𝜑𝐽 ∈ ℕ) → (vol*‘((,)‘(𝐺𝐽))) = (vol*‘((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽)))))
29 ovolfcl 23042 . . . . . . . . . . . . . . . 16 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐽 ∈ ℕ) → ((1st ‘(𝐺𝐽)) ∈ ℝ ∧ (2nd ‘(𝐺𝐽)) ∈ ℝ ∧ (1st ‘(𝐺𝐽)) ≤ (2nd ‘(𝐺𝐽))))
3011, 29sylan 487 . . . . . . . . . . . . . . 15 ((𝜑𝐽 ∈ ℕ) → ((1st ‘(𝐺𝐽)) ∈ ℝ ∧ (2nd ‘(𝐺𝐽)) ∈ ℝ ∧ (1st ‘(𝐺𝐽)) ≤ (2nd ‘(𝐺𝐽))))
31 ovolioo 23143 . . . . . . . . . . . . . . 15 (((1st ‘(𝐺𝐽)) ∈ ℝ ∧ (2nd ‘(𝐺𝐽)) ∈ ℝ ∧ (1st ‘(𝐺𝐽)) ≤ (2nd ‘(𝐺𝐽))) → (vol*‘((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽)))) = ((2nd ‘(𝐺𝐽)) − (1st ‘(𝐺𝐽))))
3230, 31syl 17 . . . . . . . . . . . . . 14 ((𝜑𝐽 ∈ ℕ) → (vol*‘((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽)))) = ((2nd ‘(𝐺𝐽)) − (1st ‘(𝐺𝐽))))
3328, 32eqtrd 2644 . . . . . . . . . . . . 13 ((𝜑𝐽 ∈ ℕ) → (vol*‘((,)‘(𝐺𝐽))) = ((2nd ‘(𝐺𝐽)) − (1st ‘(𝐺𝐽))))
3430simp2d 1067 . . . . . . . . . . . . . 14 ((𝜑𝐽 ∈ ℕ) → (2nd ‘(𝐺𝐽)) ∈ ℝ)
3530simp1d 1066 . . . . . . . . . . . . . 14 ((𝜑𝐽 ∈ ℕ) → (1st ‘(𝐺𝐽)) ∈ ℝ)
3634, 35resubcld 10337 . . . . . . . . . . . . 13 ((𝜑𝐽 ∈ ℕ) → ((2nd ‘(𝐺𝐽)) − (1st ‘(𝐺𝐽))) ∈ ℝ)
3733, 36eqeltrd 2688 . . . . . . . . . . . 12 ((𝜑𝐽 ∈ ℕ) → (vol*‘((,)‘(𝐺𝐽))) ∈ ℝ)
38 ovolsscl 23061 . . . . . . . . . . . 12 (((((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ⊆ ((,)‘(𝐺𝐽)) ∧ ((,)‘(𝐺𝐽)) ⊆ ℝ ∧ (vol*‘((,)‘(𝐺𝐽))) ∈ ℝ) → (vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))) ∈ ℝ)
3917, 27, 37, 38syl3anc 1318 . . . . . . . . . . 11 ((𝜑𝐽 ∈ ℕ) → (vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))) ∈ ℝ)
4039adantr 480 . . . . . . . . . 10 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))) ∈ ℝ)
41 uniioombllem2.k . . . . . . . . . . 11 𝐾 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩))
4241ioorcl 23151 . . . . . . . . . 10 (((((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ∈ ran (,) ∧ (vol*‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))) ∈ ℝ) → (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))) ∈ ( ≤ ∩ (ℝ × ℝ)))
4315, 40, 42syl2anc 691 . . . . . . . . 9 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))) ∈ ( ≤ ∩ (ℝ × ℝ)))
44 eqid 2610 . . . . . . . . 9 (𝑧 ∈ ℕ ↦ (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))) = (𝑧 ∈ ℕ ↦ (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))
4543, 44fmptd 6292 . . . . . . . 8 ((𝜑𝐽 ∈ ℕ) → (𝑧 ∈ ℕ ↦ (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))):ℕ⟶( ≤ ∩ (ℝ × ℝ)))
46 uniioombllem2.h . . . . . . . . . . 11 𝐻 = (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))
4746a1i 11 . . . . . . . . . 10 ((𝜑𝐽 ∈ ℕ) → 𝐻 = (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))
4841ioorf 23147 . . . . . . . . . . . 12 𝐾:ran (,)⟶( ≤ ∩ (ℝ* × ℝ*))
4948a1i 11 . . . . . . . . . . 11 ((𝜑𝐽 ∈ ℕ) → 𝐾:ran (,)⟶( ≤ ∩ (ℝ* × ℝ*)))
5049feqmptd 6159 . . . . . . . . . 10 ((𝜑𝐽 ∈ ℕ) → 𝐾 = (𝑦 ∈ ran (,) ↦ (𝐾𝑦)))
51 fveq2 6103 . . . . . . . . . 10 (𝑦 = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) → (𝐾𝑦) = (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))
5215, 47, 50, 51fmptco 6303 . . . . . . . . 9 ((𝜑𝐽 ∈ ℕ) → (𝐾𝐻) = (𝑧 ∈ ℕ ↦ (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))))
5352feq1d 5943 . . . . . . . 8 ((𝜑𝐽 ∈ ℕ) → ((𝐾𝐻):ℕ⟶( ≤ ∩ (ℝ × ℝ)) ↔ (𝑧 ∈ ℕ ↦ (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))):ℕ⟶( ≤ ∩ (ℝ × ℝ))))
5445, 53mpbird 246 . . . . . . 7 ((𝜑𝐽 ∈ ℕ) → (𝐾𝐻):ℕ⟶( ≤ ∩ (ℝ × ℝ)))
55 eqid 2610 . . . . . . . 8 ((abs ∘ − ) ∘ (𝐾𝐻)) = ((abs ∘ − ) ∘ (𝐾𝐻))
5655ovolfsf 23047 . . . . . . 7 ((𝐾𝐻):ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((abs ∘ − ) ∘ (𝐾𝐻)):ℕ⟶(0[,)+∞))
5754, 56syl 17 . . . . . 6 ((𝜑𝐽 ∈ ℕ) → ((abs ∘ − ) ∘ (𝐾𝐻)):ℕ⟶(0[,)+∞))
5857ffvelrnda 6267 . . . . 5 (((𝜑𝐽 ∈ ℕ) ∧ 𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ (𝐾𝐻))‘𝑛) ∈ (0[,)+∞))
59 elrege0 12149 . . . . 5 ((((abs ∘ − ) ∘ (𝐾𝐻))‘𝑛) ∈ (0[,)+∞) ↔ ((((abs ∘ − ) ∘ (𝐾𝐻))‘𝑛) ∈ ℝ ∧ 0 ≤ (((abs ∘ − ) ∘ (𝐾𝐻))‘𝑛)))
6058, 59sylib 207 . . . 4 (((𝜑𝐽 ∈ ℕ) ∧ 𝑛 ∈ ℕ) → ((((abs ∘ − ) ∘ (𝐾𝐻))‘𝑛) ∈ ℝ ∧ 0 ≤ (((abs ∘ − ) ∘ (𝐾𝐻))‘𝑛)))
6160simpld 474 . . 3 (((𝜑𝐽 ∈ ℕ) ∧ 𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ (𝐾𝐻))‘𝑛) ∈ ℝ)
6260simprd 478 . . 3 (((𝜑𝐽 ∈ ℕ) ∧ 𝑛 ∈ ℕ) → 0 ≤ (((abs ∘ − ) ∘ (𝐾𝐻))‘𝑛))
6352fveq1d 6105 . . . . . . . . . . . . . . 15 ((𝜑𝐽 ∈ ℕ) → ((𝐾𝐻)‘𝑧) = ((𝑧 ∈ ℕ ↦ (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))‘𝑧))
64 fvex 6113 . . . . . . . . . . . . . . . 16 (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))) ∈ V
6544fvmpt2 6200 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℕ ∧ (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))) ∈ V) → ((𝑧 ∈ ℕ ↦ (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))‘𝑧) = (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))
6664, 65mpan2 703 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℕ → ((𝑧 ∈ ℕ ↦ (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))‘𝑧) = (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))
6763, 66sylan9eq 2664 . . . . . . . . . . . . . 14 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → ((𝐾𝐻)‘𝑧) = (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))
6867fveq2d 6107 . . . . . . . . . . . . 13 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → ((,)‘((𝐾𝐻)‘𝑧)) = ((,)‘(𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))))
6941ioorinv 23150 . . . . . . . . . . . . . 14 ((((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ∈ ran (,) → ((,)‘(𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))) = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))
7015, 69syl 17 . . . . . . . . . . . . 13 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → ((,)‘(𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))) = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))
7168, 70eqtrd 2644 . . . . . . . . . . . 12 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → ((,)‘((𝐾𝐻)‘𝑧)) = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))
7271ralrimiva 2949 . . . . . . . . . . 11 ((𝜑𝐽 ∈ ℕ) → ∀𝑧 ∈ ℕ ((,)‘((𝐾𝐻)‘𝑧)) = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))
73 fveq2 6103 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → ((𝐾𝐻)‘𝑧) = ((𝐾𝐻)‘𝑥))
7473fveq2d 6107 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → ((,)‘((𝐾𝐻)‘𝑧)) = ((,)‘((𝐾𝐻)‘𝑥)))
75 fveq2 6103 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
7675fveq2d 6107 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → ((,)‘(𝐹𝑧)) = ((,)‘(𝐹𝑥)))
7776ineq1d 3775 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) = (((,)‘(𝐹𝑥)) ∩ ((,)‘(𝐺𝐽))))
7874, 77eqeq12d 2625 . . . . . . . . . . . 12 (𝑧 = 𝑥 → (((,)‘((𝐾𝐻)‘𝑧)) = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ↔ ((,)‘((𝐾𝐻)‘𝑥)) = (((,)‘(𝐹𝑥)) ∩ ((,)‘(𝐺𝐽)))))
7978rspccva 3281 . . . . . . . . . . 11 ((∀𝑧 ∈ ℕ ((,)‘((𝐾𝐻)‘𝑧)) = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ∧ 𝑥 ∈ ℕ) → ((,)‘((𝐾𝐻)‘𝑥)) = (((,)‘(𝐹𝑥)) ∩ ((,)‘(𝐺𝐽))))
8072, 79sylan 487 . . . . . . . . . 10 (((𝜑𝐽 ∈ ℕ) ∧ 𝑥 ∈ ℕ) → ((,)‘((𝐾𝐻)‘𝑥)) = (((,)‘(𝐹𝑥)) ∩ ((,)‘(𝐺𝐽))))
81 inss1 3795 . . . . . . . . . 10 (((,)‘(𝐹𝑥)) ∩ ((,)‘(𝐺𝐽))) ⊆ ((,)‘(𝐹𝑥))
8280, 81syl6eqss 3618 . . . . . . . . 9 (((𝜑𝐽 ∈ ℕ) ∧ 𝑥 ∈ ℕ) → ((,)‘((𝐾𝐻)‘𝑥)) ⊆ ((,)‘(𝐹𝑥)))
8382ralrimiva 2949 . . . . . . . 8 ((𝜑𝐽 ∈ ℕ) → ∀𝑥 ∈ ℕ ((,)‘((𝐾𝐻)‘𝑥)) ⊆ ((,)‘(𝐹𝑥)))
846adantr 480 . . . . . . . 8 ((𝜑𝐽 ∈ ℕ) → Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
85 disjss2 4556 . . . . . . . 8 (∀𝑥 ∈ ℕ ((,)‘((𝐾𝐻)‘𝑥)) ⊆ ((,)‘(𝐹𝑥)) → (Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)) → Disj 𝑥 ∈ ℕ ((,)‘((𝐾𝐻)‘𝑥))))
8683, 84, 85sylc 63 . . . . . . 7 ((𝜑𝐽 ∈ ℕ) → Disj 𝑥 ∈ ℕ ((,)‘((𝐾𝐻)‘𝑥)))
8754, 86, 2uniioovol 23153 . . . . . 6 ((𝜑𝐽 ∈ ℕ) → (vol*‘ ran ((,) ∘ (𝐾𝐻))) = sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < ))
8870mpteq2dva 4672 . . . . . . . . . . 11 ((𝜑𝐽 ∈ ℕ) → (𝑧 ∈ ℕ ↦ ((,)‘(𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))) = (𝑧 ∈ ℕ ↦ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))
89 rexpssxrxp 9963 . . . . . . . . . . . . . 14 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
9018, 89sstri 3577 . . . . . . . . . . . . 13 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
9190, 43sseldi 3566 . . . . . . . . . . . 12 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))) ∈ (ℝ* × ℝ*))
92 ioof 12142 . . . . . . . . . . . . . 14 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
9392a1i 11 . . . . . . . . . . . . 13 ((𝜑𝐽 ∈ ℕ) → (,):(ℝ* × ℝ*)⟶𝒫 ℝ)
9493feqmptd 6159 . . . . . . . . . . . 12 ((𝜑𝐽 ∈ ℕ) → (,) = (𝑦 ∈ (ℝ* × ℝ*) ↦ ((,)‘𝑦)))
95 fveq2 6103 . . . . . . . . . . . 12 (𝑦 = (𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))) → ((,)‘𝑦) = ((,)‘(𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))))
9691, 52, 94, 95fmptco 6303 . . . . . . . . . . 11 ((𝜑𝐽 ∈ ℕ) → ((,) ∘ (𝐾𝐻)) = (𝑧 ∈ ℕ ↦ ((,)‘(𝐾‘(((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽)))))))
9788, 96, 473eqtr4d 2654 . . . . . . . . . 10 ((𝜑𝐽 ∈ ℕ) → ((,) ∘ (𝐾𝐻)) = 𝐻)
9897rneqd 5274 . . . . . . . . 9 ((𝜑𝐽 ∈ ℕ) → ran ((,) ∘ (𝐾𝐻)) = ran 𝐻)
9998unieqd 4382 . . . . . . . 8 ((𝜑𝐽 ∈ ℕ) → ran ((,) ∘ (𝐾𝐻)) = ran 𝐻)
100 fvex 6113 . . . . . . . . . . . . . 14 ((,)‘(𝐹𝑧)) ∈ V
101100inex1 4727 . . . . . . . . . . . . 13 (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ∈ V
10246fvmpt2 6200 . . . . . . . . . . . . 13 ((𝑧 ∈ ℕ ∧ (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ∈ V) → (𝐻𝑧) = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))
103101, 102mpan2 703 . . . . . . . . . . . 12 (𝑧 ∈ ℕ → (𝐻𝑧) = (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))))
104 incom 3767 . . . . . . . . . . . 12 (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) = (((,)‘(𝐺𝐽)) ∩ ((,)‘(𝐹𝑧)))
105103, 104syl6eq 2660 . . . . . . . . . . 11 (𝑧 ∈ ℕ → (𝐻𝑧) = (((,)‘(𝐺𝐽)) ∩ ((,)‘(𝐹𝑧))))
106105iuneq2i 4475 . . . . . . . . . 10 𝑧 ∈ ℕ (𝐻𝑧) = 𝑧 ∈ ℕ (((,)‘(𝐺𝐽)) ∩ ((,)‘(𝐹𝑧)))
107 iunin2 4520 . . . . . . . . . 10 𝑧 ∈ ℕ (((,)‘(𝐺𝐽)) ∩ ((,)‘(𝐹𝑧))) = (((,)‘(𝐺𝐽)) ∩ 𝑧 ∈ ℕ ((,)‘(𝐹𝑧)))
108106, 107eqtri 2632 . . . . . . . . 9 𝑧 ∈ ℕ (𝐻𝑧) = (((,)‘(𝐺𝐽)) ∩ 𝑧 ∈ ℕ ((,)‘(𝐹𝑧)))
10915, 46fmptd 6292 . . . . . . . . . . 11 ((𝜑𝐽 ∈ ℕ) → 𝐻:ℕ⟶ran (,))
110 ffn 5958 . . . . . . . . . . 11 (𝐻:ℕ⟶ran (,) → 𝐻 Fn ℕ)
111109, 110syl 17 . . . . . . . . . 10 ((𝜑𝐽 ∈ ℕ) → 𝐻 Fn ℕ)
112 fniunfv 6409 . . . . . . . . . 10 (𝐻 Fn ℕ → 𝑧 ∈ ℕ (𝐻𝑧) = ran 𝐻)
113111, 112syl 17 . . . . . . . . 9 ((𝜑𝐽 ∈ ℕ) → 𝑧 ∈ ℕ (𝐻𝑧) = ran 𝐻)
114108, 113syl5eqr 2658 . . . . . . . 8 ((𝜑𝐽 ∈ ℕ) → (((,)‘(𝐺𝐽)) ∩ 𝑧 ∈ ℕ ((,)‘(𝐹𝑧))) = ran 𝐻)
1155adantr 480 . . . . . . . . . . . 12 ((𝜑𝐽 ∈ ℕ) → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
116 fvco3 6185 . . . . . . . . . . . 12 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑧 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑧) = ((,)‘(𝐹𝑧)))
117115, 116sylan 487 . . . . . . . . . . 11 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑧) = ((,)‘(𝐹𝑧)))
118117iuneq2dv 4478 . . . . . . . . . 10 ((𝜑𝐽 ∈ ℕ) → 𝑧 ∈ ℕ (((,) ∘ 𝐹)‘𝑧) = 𝑧 ∈ ℕ ((,)‘(𝐹𝑧)))
119 ffn 5958 . . . . . . . . . . . . . 14 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
12092, 119ax-mp 5 . . . . . . . . . . . . 13 (,) Fn (ℝ* × ℝ*)
121 fss 5969 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐹:ℕ⟶(ℝ* × ℝ*))
122115, 90, 121sylancl 693 . . . . . . . . . . . . 13 ((𝜑𝐽 ∈ ℕ) → 𝐹:ℕ⟶(ℝ* × ℝ*))
123 fnfco 5982 . . . . . . . . . . . . 13 (((,) Fn (ℝ* × ℝ*) ∧ 𝐹:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐹) Fn ℕ)
124120, 122, 123sylancr 694 . . . . . . . . . . . 12 ((𝜑𝐽 ∈ ℕ) → ((,) ∘ 𝐹) Fn ℕ)
125 fniunfv 6409 . . . . . . . . . . . 12 (((,) ∘ 𝐹) Fn ℕ → 𝑧 ∈ ℕ (((,) ∘ 𝐹)‘𝑧) = ran ((,) ∘ 𝐹))
126124, 125syl 17 . . . . . . . . . . 11 ((𝜑𝐽 ∈ ℕ) → 𝑧 ∈ ℕ (((,) ∘ 𝐹)‘𝑧) = ran ((,) ∘ 𝐹))
127126, 8syl6eqr 2662 . . . . . . . . . 10 ((𝜑𝐽 ∈ ℕ) → 𝑧 ∈ ℕ (((,) ∘ 𝐹)‘𝑧) = 𝐴)
128118, 127eqtr3d 2646 . . . . . . . . 9 ((𝜑𝐽 ∈ ℕ) → 𝑧 ∈ ℕ ((,)‘(𝐹𝑧)) = 𝐴)
129128ineq2d 3776 . . . . . . . 8 ((𝜑𝐽 ∈ ℕ) → (((,)‘(𝐺𝐽)) ∩ 𝑧 ∈ ℕ ((,)‘(𝐹𝑧))) = (((,)‘(𝐺𝐽)) ∩ 𝐴))
13099, 114, 1293eqtr2d 2650 . . . . . . 7 ((𝜑𝐽 ∈ ℕ) → ran ((,) ∘ (𝐾𝐻)) = (((,)‘(𝐺𝐽)) ∩ 𝐴))
131130fveq2d 6107 . . . . . 6 ((𝜑𝐽 ∈ ℕ) → (vol*‘ ran ((,) ∘ (𝐾𝐻))) = (vol*‘(((,)‘(𝐺𝐽)) ∩ 𝐴)))
13287, 131eqtr3d 2646 . . . . 5 ((𝜑𝐽 ∈ ℕ) → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < ) = (vol*‘(((,)‘(𝐺𝐽)) ∩ 𝐴)))
133 inss1 3795 . . . . . . 7 (((,)‘(𝐺𝐽)) ∩ 𝐴) ⊆ ((,)‘(𝐺𝐽))
134133a1i 11 . . . . . 6 ((𝜑𝐽 ∈ ℕ) → (((,)‘(𝐺𝐽)) ∩ 𝐴) ⊆ ((,)‘(𝐺𝐽)))
135 ovolsscl 23061 . . . . . 6 (((((,)‘(𝐺𝐽)) ∩ 𝐴) ⊆ ((,)‘(𝐺𝐽)) ∧ ((,)‘(𝐺𝐽)) ⊆ ℝ ∧ (vol*‘((,)‘(𝐺𝐽))) ∈ ℝ) → (vol*‘(((,)‘(𝐺𝐽)) ∩ 𝐴)) ∈ ℝ)
136134, 27, 37, 135syl3anc 1318 . . . . 5 ((𝜑𝐽 ∈ ℕ) → (vol*‘(((,)‘(𝐺𝐽)) ∩ 𝐴)) ∈ ℝ)
137132, 136eqeltrd 2688 . . . 4 ((𝜑𝐽 ∈ ℕ) → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < ) ∈ ℝ)
13855, 2ovolsf 23048 . . . . . . . . 9 ((𝐾𝐻):ℕ⟶( ≤ ∩ (ℝ × ℝ)) → seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))):ℕ⟶(0[,)+∞))
13954, 138syl 17 . . . . . . . 8 ((𝜑𝐽 ∈ ℕ) → seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))):ℕ⟶(0[,)+∞))
140 ffn 5958 . . . . . . . 8 (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))):ℕ⟶(0[,)+∞) → seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) Fn ℕ)
141139, 140syl 17 . . . . . . 7 ((𝜑𝐽 ∈ ℕ) → seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) Fn ℕ)
142 fnfvelrn 6264 . . . . . . 7 ((seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) Fn ℕ ∧ 𝑦 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))))
143141, 142sylan 487 . . . . . 6 (((𝜑𝐽 ∈ ℕ) ∧ 𝑦 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))))
144 frn 5966 . . . . . . . . 9 (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))):ℕ⟶(0[,)+∞) → ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ⊆ (0[,)+∞))
145139, 144syl 17 . . . . . . . 8 ((𝜑𝐽 ∈ ℕ) → ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ⊆ (0[,)+∞))
146 icossxr 12129 . . . . . . . 8 (0[,)+∞) ⊆ ℝ*
147145, 146syl6ss 3580 . . . . . . 7 ((𝜑𝐽 ∈ ℕ) → ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ⊆ ℝ*)
148 supxrub 12026 . . . . . . 7 ((ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ⊆ ℝ* ∧ (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))) → (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < ))
149147, 148sylan 487 . . . . . 6 (((𝜑𝐽 ∈ ℕ) ∧ (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))) → (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < ))
150143, 149syldan 486 . . . . 5 (((𝜑𝐽 ∈ ℕ) ∧ 𝑦 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < ))
151150ralrimiva 2949 . . . 4 ((𝜑𝐽 ∈ ℕ) → ∀𝑦 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < ))
152 breq2 4587 . . . . . 6 (𝑥 = sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < ) → ((seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ 𝑥 ↔ (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < )))
153152ralbidv 2969 . . . . 5 (𝑥 = sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < ) → (∀𝑦 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ 𝑥 ↔ ∀𝑦 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < )))
154153rspcev 3282 . . . 4 ((sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < ) ∈ ℝ ∧ ∀𝑦 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < )) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ 𝑥)
155137, 151, 154syl2anc 691 . . 3 ((𝜑𝐽 ∈ ℕ) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ 𝑥)
1561, 2, 3, 4, 61, 62, 155isumsup2 14417 . 2 ((𝜑𝐽 ∈ ℕ) → seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ⇝ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ, < ))
15755ovolfs2 23145 . . . . 5 ((𝐾𝐻):ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((abs ∘ − ) ∘ (𝐾𝐻)) = ((vol* ∘ (,)) ∘ (𝐾𝐻)))
15854, 157syl 17 . . . 4 ((𝜑𝐽 ∈ ℕ) → ((abs ∘ − ) ∘ (𝐾𝐻)) = ((vol* ∘ (,)) ∘ (𝐾𝐻)))
159 coass 5571 . . . . 5 ((vol* ∘ (,)) ∘ (𝐾𝐻)) = (vol* ∘ ((,) ∘ (𝐾𝐻)))
16097coeq2d 5206 . . . . 5 ((𝜑𝐽 ∈ ℕ) → (vol* ∘ ((,) ∘ (𝐾𝐻))) = (vol* ∘ 𝐻))
161159, 160syl5eq 2656 . . . 4 ((𝜑𝐽 ∈ ℕ) → ((vol* ∘ (,)) ∘ (𝐾𝐻)) = (vol* ∘ 𝐻))
162158, 161eqtrd 2644 . . 3 ((𝜑𝐽 ∈ ℕ) → ((abs ∘ − ) ∘ (𝐾𝐻)) = (vol* ∘ 𝐻))
163162seqeq3d 12671 . 2 ((𝜑𝐽 ∈ ℕ) → seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) = seq1( + , (vol* ∘ 𝐻)))
164 rge0ssre 12151 . . . . 5 (0[,)+∞) ⊆ ℝ
165145, 164syl6ss 3580 . . . 4 ((𝜑𝐽 ∈ ℕ) → ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ⊆ ℝ)
166 1nn 10908 . . . . . . 7 1 ∈ ℕ
167 fdm 5964 . . . . . . . 8 (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))):ℕ⟶(0[,)+∞) → dom seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) = ℕ)
168139, 167syl 17 . . . . . . 7 ((𝜑𝐽 ∈ ℕ) → dom seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) = ℕ)
169166, 168syl5eleqr 2695 . . . . . 6 ((𝜑𝐽 ∈ ℕ) → 1 ∈ dom seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))))
170 ne0i 3880 . . . . . 6 (1 ∈ dom seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) → dom seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ≠ ∅)
171169, 170syl 17 . . . . 5 ((𝜑𝐽 ∈ ℕ) → dom seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ≠ ∅)
172 dm0rn0 5263 . . . . . 6 (dom seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) = ∅ ↔ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) = ∅)
173172necon3bii 2834 . . . . 5 (dom seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ≠ ∅ ↔ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ≠ ∅)
174171, 173sylib 207 . . . 4 ((𝜑𝐽 ∈ ℕ) → ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ≠ ∅)
175 breq1 4586 . . . . . . . 8 (𝑧 = (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) → (𝑧𝑥 ↔ (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ 𝑥))
176175ralrn 6270 . . . . . . 7 (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) Fn ℕ → (∀𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))𝑧𝑥 ↔ ∀𝑦 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ 𝑥))
177141, 176syl 17 . . . . . 6 ((𝜑𝐽 ∈ ℕ) → (∀𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))𝑧𝑥 ↔ ∀𝑦 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ 𝑥))
178177rexbidv 3034 . . . . 5 ((𝜑𝐽 ∈ ℕ) → (∃𝑥 ∈ ℝ ∀𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))𝑧𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))‘𝑦) ≤ 𝑥))
179155, 178mpbird 246 . . . 4 ((𝜑𝐽 ∈ ℕ) → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))𝑧𝑥)
180 supxrre 12029 . . . 4 ((ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ⊆ ℝ ∧ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻)))𝑧𝑥) → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ, < ))
181165, 174, 179, 180syl3anc 1318 . . 3 ((𝜑𝐽 ∈ ℕ) → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ, < ))
182181, 132eqtr3d 2646 . 2 ((𝜑𝐽 ∈ ℕ) → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝐾𝐻))), ℝ, < ) = (vol*‘(((,)‘(𝐺𝐽)) ∩ 𝐴)))
183156, 163, 1823brtr3d 4614 1 ((𝜑𝐽 ∈ ℕ) → seq1( + , (vol* ∘ 𝐻)) ⇝ (vol*‘(((,)‘(𝐺𝐽)) ∩ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  Vcvv 3173  cin 3539  wss 3540  c0 3874  ifcif 4036  𝒫 cpw 4108  cop 4131   cuni 4372   ciun 4455  Disj wdisj 4553   class class class wbr 4583  cmpt 4643   × cxp 5036  dom cdm 5038  ran crn 5039  ccom 5042   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058  supcsup 8229  infcinf 8230  cr 9814  0cc0 9815  1c1 9816   + caddc 9818  +∞cpnf 9950  *cxr 9952   < clt 9953  cle 9954  cmin 10145  cn 10897  +crp 11708  (,)cioo 12046  [,)cico 12048  seqcseq 12663  abscabs 13822  cli 14063  vol*covol 23038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-rest 15906  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-cmp 21000  df-ovol 23040  df-vol 23041
This theorem is referenced by:  uniioombllem6  23162
  Copyright terms: Public domain W3C validator