MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spthon Structured version   Visualization version   GIF version

Theorem spthon 26112
Description: The set of simple paths between two vertices (in an undirected graph). (Contributed by Alexander van der Vekens, 1-Mar-2018.)
Assertion
Ref Expression
spthon (((𝑉𝑋𝐸𝑌) ∧ (𝐴𝑉𝐵𝑉)) → (𝐴(𝑉 SPathOn 𝐸)𝐵) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝐴(𝑉 WalkOn 𝐸)𝐵)𝑝𝑓(𝑉 SPaths 𝐸)𝑝)})
Distinct variable groups:   𝑓,𝐸,𝑝   𝑓,𝑉,𝑝   𝑓,𝑋,𝑝   𝑓,𝑌,𝑝   𝐴,𝑓,𝑝   𝐵,𝑓,𝑝

Proof of Theorem spthon
Dummy variables 𝑎 𝑏 𝑒 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3185 . . . . 5 (𝑉𝑋𝑉 ∈ V)
21ad2antrr 758 . . . 4 (((𝑉𝑋𝐸𝑌) ∧ (𝐴𝑉𝐵𝑉)) → 𝑉 ∈ V)
3 elex 3185 . . . . . 6 (𝐸𝑌𝐸 ∈ V)
43adantl 481 . . . . 5 ((𝑉𝑋𝐸𝑌) → 𝐸 ∈ V)
54adantr 480 . . . 4 (((𝑉𝑋𝐸𝑌) ∧ (𝐴𝑉𝐵𝑉)) → 𝐸 ∈ V)
6 id 22 . . . . . . 7 (𝑉𝑋𝑉𝑋)
76ancli 572 . . . . . 6 (𝑉𝑋 → (𝑉𝑋𝑉𝑋))
87ad2antrr 758 . . . . 5 (((𝑉𝑋𝐸𝑌) ∧ (𝐴𝑉𝐵𝑉)) → (𝑉𝑋𝑉𝑋))
9 mpt2exga 7135 . . . . 5 ((𝑉𝑋𝑉𝑋) → (𝑎𝑉, 𝑏𝑉 ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑎(𝑉 WalkOn 𝐸)𝑏)𝑝𝑓(𝑉 SPaths 𝐸)𝑝)}) ∈ V)
108, 9syl 17 . . . 4 (((𝑉𝑋𝐸𝑌) ∧ (𝐴𝑉𝐵𝑉)) → (𝑎𝑉, 𝑏𝑉 ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑎(𝑉 WalkOn 𝐸)𝑏)𝑝𝑓(𝑉 SPaths 𝐸)𝑝)}) ∈ V)
11 simpl 472 . . . . . 6 ((𝑣 = 𝑉𝑒 = 𝐸) → 𝑣 = 𝑉)
12 oveq12 6558 . . . . . . . . . 10 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝑣 WalkOn 𝑒) = (𝑉 WalkOn 𝐸))
1312oveqd 6566 . . . . . . . . 9 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝑎(𝑣 WalkOn 𝑒)𝑏) = (𝑎(𝑉 WalkOn 𝐸)𝑏))
1413breqd 4594 . . . . . . . 8 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝑓(𝑎(𝑣 WalkOn 𝑒)𝑏)𝑝𝑓(𝑎(𝑉 WalkOn 𝐸)𝑏)𝑝))
15 oveq12 6558 . . . . . . . . 9 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝑣 SPaths 𝑒) = (𝑉 SPaths 𝐸))
1615breqd 4594 . . . . . . . 8 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝑓(𝑣 SPaths 𝑒)𝑝𝑓(𝑉 SPaths 𝐸)𝑝))
1714, 16anbi12d 743 . . . . . . 7 ((𝑣 = 𝑉𝑒 = 𝐸) → ((𝑓(𝑎(𝑣 WalkOn 𝑒)𝑏)𝑝𝑓(𝑣 SPaths 𝑒)𝑝) ↔ (𝑓(𝑎(𝑉 WalkOn 𝐸)𝑏)𝑝𝑓(𝑉 SPaths 𝐸)𝑝)))
1817opabbidv 4648 . . . . . 6 ((𝑣 = 𝑉𝑒 = 𝐸) → {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑎(𝑣 WalkOn 𝑒)𝑏)𝑝𝑓(𝑣 SPaths 𝑒)𝑝)} = {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑎(𝑉 WalkOn 𝐸)𝑏)𝑝𝑓(𝑉 SPaths 𝐸)𝑝)})
1911, 11, 18mpt2eq123dv 6615 . . . . 5 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝑎𝑣, 𝑏𝑣 ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑎(𝑣 WalkOn 𝑒)𝑏)𝑝𝑓(𝑣 SPaths 𝑒)𝑝)}) = (𝑎𝑉, 𝑏𝑉 ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑎(𝑉 WalkOn 𝐸)𝑏)𝑝𝑓(𝑉 SPaths 𝐸)𝑝)}))
20 df-spthon 26045 . . . . 5 SPathOn = (𝑣 ∈ V, 𝑒 ∈ V ↦ (𝑎𝑣, 𝑏𝑣 ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑎(𝑣 WalkOn 𝑒)𝑏)𝑝𝑓(𝑣 SPaths 𝑒)𝑝)}))
2119, 20ovmpt2ga 6688 . . . 4 ((𝑉 ∈ V ∧ 𝐸 ∈ V ∧ (𝑎𝑉, 𝑏𝑉 ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑎(𝑉 WalkOn 𝐸)𝑏)𝑝𝑓(𝑉 SPaths 𝐸)𝑝)}) ∈ V) → (𝑉 SPathOn 𝐸) = (𝑎𝑉, 𝑏𝑉 ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑎(𝑉 WalkOn 𝐸)𝑏)𝑝𝑓(𝑉 SPaths 𝐸)𝑝)}))
222, 5, 10, 21syl3anc 1318 . . 3 (((𝑉𝑋𝐸𝑌) ∧ (𝐴𝑉𝐵𝑉)) → (𝑉 SPathOn 𝐸) = (𝑎𝑉, 𝑏𝑉 ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑎(𝑉 WalkOn 𝐸)𝑏)𝑝𝑓(𝑉 SPaths 𝐸)𝑝)}))
2322oveqd 6566 . 2 (((𝑉𝑋𝐸𝑌) ∧ (𝐴𝑉𝐵𝑉)) → (𝐴(𝑉 SPathOn 𝐸)𝐵) = (𝐴(𝑎𝑉, 𝑏𝑉 ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑎(𝑉 WalkOn 𝐸)𝑏)𝑝𝑓(𝑉 SPaths 𝐸)𝑝)})𝐵))
24 simpl 472 . . . 4 ((𝐴𝑉𝐵𝑉) → 𝐴𝑉)
2524adantl 481 . . 3 (((𝑉𝑋𝐸𝑌) ∧ (𝐴𝑉𝐵𝑉)) → 𝐴𝑉)
26 simprr 792 . . 3 (((𝑉𝑋𝐸𝑌) ∧ (𝐴𝑉𝐵𝑉)) → 𝐵𝑉)
27 ancom 465 . . . . . . 7 ((𝑓(𝐴(𝑉 WalkOn 𝐸)𝐵)𝑝𝑓(𝑉 SPaths 𝐸)𝑝) ↔ (𝑓(𝑉 SPaths 𝐸)𝑝𝑓(𝐴(𝑉 WalkOn 𝐸)𝐵)𝑝))
2827a1i 11 . . . . . 6 ((𝑉𝑋𝐸𝑌) → ((𝑓(𝐴(𝑉 WalkOn 𝐸)𝐵)𝑝𝑓(𝑉 SPaths 𝐸)𝑝) ↔ (𝑓(𝑉 SPaths 𝐸)𝑝𝑓(𝐴(𝑉 WalkOn 𝐸)𝐵)𝑝)))
2928opabbidv 4648 . . . . 5 ((𝑉𝑋𝐸𝑌) → {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝐴(𝑉 WalkOn 𝐸)𝐵)𝑝𝑓(𝑉 SPaths 𝐸)𝑝)} = {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉 SPaths 𝐸)𝑝𝑓(𝐴(𝑉 WalkOn 𝐸)𝐵)𝑝)})
30 spthispth 26103 . . . . . . . 8 (𝑓(𝑉 SPaths 𝐸)𝑝𝑓(𝑉 Paths 𝐸)𝑝)
31 pthistrl 26102 . . . . . . . 8 (𝑓(𝑉 Paths 𝐸)𝑝𝑓(𝑉 Trails 𝐸)𝑝)
32 trliswlk 26069 . . . . . . . 8 (𝑓(𝑉 Trails 𝐸)𝑝𝑓(𝑉 Walks 𝐸)𝑝)
3330, 31, 323syl 18 . . . . . . 7 (𝑓(𝑉 SPaths 𝐸)𝑝𝑓(𝑉 Walks 𝐸)𝑝)
3433wlkres 26050 . . . . . 6 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉 SPaths 𝐸)𝑝𝑓(𝐴(𝑉 WalkOn 𝐸)𝐵)𝑝)} ∈ V)
351, 3, 34syl2an 493 . . . . 5 ((𝑉𝑋𝐸𝑌) → {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉 SPaths 𝐸)𝑝𝑓(𝐴(𝑉 WalkOn 𝐸)𝐵)𝑝)} ∈ V)
3629, 35eqeltrd 2688 . . . 4 ((𝑉𝑋𝐸𝑌) → {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝐴(𝑉 WalkOn 𝐸)𝐵)𝑝𝑓(𝑉 SPaths 𝐸)𝑝)} ∈ V)
3736adantr 480 . . 3 (((𝑉𝑋𝐸𝑌) ∧ (𝐴𝑉𝐵𝑉)) → {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝐴(𝑉 WalkOn 𝐸)𝐵)𝑝𝑓(𝑉 SPaths 𝐸)𝑝)} ∈ V)
38 oveq12 6558 . . . . . . 7 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑎(𝑉 WalkOn 𝐸)𝑏) = (𝐴(𝑉 WalkOn 𝐸)𝐵))
3938breqd 4594 . . . . . 6 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑓(𝑎(𝑉 WalkOn 𝐸)𝑏)𝑝𝑓(𝐴(𝑉 WalkOn 𝐸)𝐵)𝑝))
4039anbi1d 737 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → ((𝑓(𝑎(𝑉 WalkOn 𝐸)𝑏)𝑝𝑓(𝑉 SPaths 𝐸)𝑝) ↔ (𝑓(𝐴(𝑉 WalkOn 𝐸)𝐵)𝑝𝑓(𝑉 SPaths 𝐸)𝑝)))
4140opabbidv 4648 . . . 4 ((𝑎 = 𝐴𝑏 = 𝐵) → {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑎(𝑉 WalkOn 𝐸)𝑏)𝑝𝑓(𝑉 SPaths 𝐸)𝑝)} = {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝐴(𝑉 WalkOn 𝐸)𝐵)𝑝𝑓(𝑉 SPaths 𝐸)𝑝)})
42 eqid 2610 . . . 4 (𝑎𝑉, 𝑏𝑉 ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑎(𝑉 WalkOn 𝐸)𝑏)𝑝𝑓(𝑉 SPaths 𝐸)𝑝)}) = (𝑎𝑉, 𝑏𝑉 ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑎(𝑉 WalkOn 𝐸)𝑏)𝑝𝑓(𝑉 SPaths 𝐸)𝑝)})
4341, 42ovmpt2ga 6688 . . 3 ((𝐴𝑉𝐵𝑉 ∧ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝐴(𝑉 WalkOn 𝐸)𝐵)𝑝𝑓(𝑉 SPaths 𝐸)𝑝)} ∈ V) → (𝐴(𝑎𝑉, 𝑏𝑉 ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑎(𝑉 WalkOn 𝐸)𝑏)𝑝𝑓(𝑉 SPaths 𝐸)𝑝)})𝐵) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝐴(𝑉 WalkOn 𝐸)𝐵)𝑝𝑓(𝑉 SPaths 𝐸)𝑝)})
4425, 26, 37, 43syl3anc 1318 . 2 (((𝑉𝑋𝐸𝑌) ∧ (𝐴𝑉𝐵𝑉)) → (𝐴(𝑎𝑉, 𝑏𝑉 ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑎(𝑉 WalkOn 𝐸)𝑏)𝑝𝑓(𝑉 SPaths 𝐸)𝑝)})𝐵) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝐴(𝑉 WalkOn 𝐸)𝐵)𝑝𝑓(𝑉 SPaths 𝐸)𝑝)})
4523, 44eqtrd 2644 1 (((𝑉𝑋𝐸𝑌) ∧ (𝐴𝑉𝐵𝑉)) → (𝐴(𝑉 SPathOn 𝐸)𝐵) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝐴(𝑉 WalkOn 𝐸)𝐵)𝑝𝑓(𝑉 SPaths 𝐸)𝑝)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  Vcvv 3173   class class class wbr 4583  {copab 4642  (class class class)co 6549  cmpt2 6551   Walks cwalk 26026   Trails ctrail 26027   Paths cpath 26028   SPaths cspath 26029   WalkOn cwlkon 26030   SPathOn cspthon 26033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-wlk 26036  df-trail 26037  df-pth 26038  df-spth 26039  df-spthon 26045
This theorem is referenced by:  isspthon  26113  spthonprp  26115
  Copyright terms: Public domain W3C validator