MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spthon Structured version   Unicode version

Theorem spthon 24407
Description: The set of simple paths between two vertices (in an undirected graph). (Contributed by Alexander van der Vekens, 1-Mar-2018.)
Assertion
Ref Expression
spthon  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V ) )  -> 
( A ( V SPathOn  E ) B )  =  { <. f ,  p >.  |  (
f ( A ( V WalkOn  E ) B ) p  /\  f
( V SPaths  E )
p ) } )
Distinct variable groups:    f, E, p    f, V, p    f, X, p    f, Y, p    A, f, p    B, f, p

Proof of Theorem spthon
Dummy variables  a 
b  e  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3127 . . . . 5  |-  ( V  e.  X  ->  V  e.  _V )
21ad2antrr 725 . . . 4  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V ) )  ->  V  e.  _V )
3 elex 3127 . . . . . 6  |-  ( E  e.  Y  ->  E  e.  _V )
43adantl 466 . . . . 5  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  E  e.  _V )
54adantr 465 . . . 4  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V ) )  ->  E  e.  _V )
6 id 22 . . . . . . 7  |-  ( V  e.  X  ->  V  e.  X )
76ancli 551 . . . . . 6  |-  ( V  e.  X  ->  ( V  e.  X  /\  V  e.  X )
)
87ad2antrr 725 . . . . 5  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V ) )  -> 
( V  e.  X  /\  V  e.  X
) )
9 mpt2exga 6871 . . . . 5  |-  ( ( V  e.  X  /\  V  e.  X )  ->  ( a  e.  V ,  b  e.  V  |->  { <. f ,  p >.  |  ( f ( a ( V WalkOn  E
) b ) p  /\  f ( V SPaths  E ) p ) } )  e.  _V )
108, 9syl 16 . . . 4  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V ) )  -> 
( a  e.  V ,  b  e.  V  |->  { <. f ,  p >.  |  ( f ( a ( V WalkOn  E
) b ) p  /\  f ( V SPaths  E ) p ) } )  e.  _V )
11 simpl 457 . . . . . 6  |-  ( ( v  =  V  /\  e  =  E )  ->  v  =  V )
12 oveq12 6304 . . . . . . . . . 10  |-  ( ( v  =  V  /\  e  =  E )  ->  ( v WalkOn  e )  =  ( V WalkOn  E
) )
1312oveqd 6312 . . . . . . . . 9  |-  ( ( v  =  V  /\  e  =  E )  ->  ( a ( v WalkOn 
e ) b )  =  ( a ( V WalkOn  E ) b ) )
1413breqd 4464 . . . . . . . 8  |-  ( ( v  =  V  /\  e  =  E )  ->  ( f ( a ( v WalkOn  e ) b ) p  <->  f (
a ( V WalkOn  E
) b ) p ) )
15 oveq12 6304 . . . . . . . . 9  |-  ( ( v  =  V  /\  e  =  E )  ->  ( v SPaths  e )  =  ( V SPaths  E
) )
1615breqd 4464 . . . . . . . 8  |-  ( ( v  =  V  /\  e  =  E )  ->  ( f ( v SPaths 
e ) p  <->  f ( V SPaths  E ) p ) )
1714, 16anbi12d 710 . . . . . . 7  |-  ( ( v  =  V  /\  e  =  E )  ->  ( ( f ( a ( v WalkOn  e
) b ) p  /\  f ( v SPaths 
e ) p )  <-> 
( f ( a ( V WalkOn  E ) b ) p  /\  f ( V SPaths  E
) p ) ) )
1817opabbidv 4516 . . . . . 6  |-  ( ( v  =  V  /\  e  =  E )  ->  { <. f ,  p >.  |  ( f ( a ( v WalkOn  e
) b ) p  /\  f ( v SPaths 
e ) p ) }  =  { <. f ,  p >.  |  ( f ( a ( V WalkOn  E ) b ) p  /\  f
( V SPaths  E )
p ) } )
1911, 11, 18mpt2eq123dv 6354 . . . . 5  |-  ( ( v  =  V  /\  e  =  E )  ->  ( a  e.  v ,  b  e.  v 
|->  { <. f ,  p >.  |  ( f ( a ( v WalkOn  e
) b ) p  /\  f ( v SPaths 
e ) p ) } )  =  ( a  e.  V , 
b  e.  V  |->  {
<. f ,  p >.  |  ( f ( a ( V WalkOn  E ) b ) p  /\  f ( V SPaths  E
) p ) } ) )
20 df-spthon 24340 . . . . 5  |- SPathOn  =  ( v  e.  _V , 
e  e.  _V  |->  ( a  e.  v ,  b  e.  v  |->  {
<. f ,  p >.  |  ( f ( a ( v WalkOn  e ) b ) p  /\  f ( v SPaths  e
) p ) } ) )
2119, 20ovmpt2ga 6427 . . . 4  |-  ( ( V  e.  _V  /\  E  e.  _V  /\  (
a  e.  V , 
b  e.  V  |->  {
<. f ,  p >.  |  ( f ( a ( V WalkOn  E ) b ) p  /\  f ( V SPaths  E
) p ) } )  e.  _V )  ->  ( V SPathOn  E )  =  ( a  e.  V ,  b  e.  V  |->  { <. f ,  p >.  |  (
f ( a ( V WalkOn  E ) b ) p  /\  f
( V SPaths  E )
p ) } ) )
222, 5, 10, 21syl3anc 1228 . . 3  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V ) )  -> 
( V SPathOn  E )  =  ( a  e.  V ,  b  e.  V  |->  { <. f ,  p >.  |  (
f ( a ( V WalkOn  E ) b ) p  /\  f
( V SPaths  E )
p ) } ) )
2322oveqd 6312 . 2  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V ) )  -> 
( A ( V SPathOn  E ) B )  =  ( A ( a  e.  V , 
b  e.  V  |->  {
<. f ,  p >.  |  ( f ( a ( V WalkOn  E ) b ) p  /\  f ( V SPaths  E
) p ) } ) B ) )
24 simpl 457 . . . 4  |-  ( ( A  e.  V  /\  B  e.  V )  ->  A  e.  V )
2524adantl 466 . . 3  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V ) )  ->  A  e.  V )
26 simprr 756 . . 3  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V ) )  ->  B  e.  V )
27 ancom 450 . . . . . . 7  |-  ( ( f ( A ( V WalkOn  E ) B ) p  /\  f
( V SPaths  E )
p )  <->  ( f
( V SPaths  E )
p  /\  f ( A ( V WalkOn  E
) B ) p ) )
2827a1i 11 . . . . . 6  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  ( ( f ( A ( V WalkOn  E
) B ) p  /\  f ( V SPaths  E ) p )  <-> 
( f ( V SPaths  E ) p  /\  f ( A ( V WalkOn  E ) B ) p ) ) )
2928opabbidv 4516 . . . . 5  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  { <. f ,  p >.  |  ( f ( A ( V WalkOn  E
) B ) p  /\  f ( V SPaths  E ) p ) }  =  { <. f ,  p >.  |  ( f ( V SPaths  E
) p  /\  f
( A ( V WalkOn  E ) B ) p ) } )
30 spthispth 24398 . . . . . . . 8  |-  ( f ( V SPaths  E ) p  ->  f ( V Paths  E ) p )
31 pthistrl 24397 . . . . . . . 8  |-  ( f ( V Paths  E ) p  ->  f ( V Trails  E ) p )
32 trliswlk 24364 . . . . . . . 8  |-  ( f ( V Trails  E ) p  ->  f ( V Walks  E ) p )
3330, 31, 323syl 20 . . . . . . 7  |-  ( f ( V SPaths  E ) p  ->  f ( V Walks  E ) p )
3433wlkres 24345 . . . . . 6  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  { <. f ,  p >.  |  ( f ( V SPaths  E ) p  /\  f ( A ( V WalkOn  E ) B ) p ) }  e.  _V )
351, 3, 34syl2an 477 . . . . 5  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  { <. f ,  p >.  |  ( f ( V SPaths  E ) p  /\  f ( A ( V WalkOn  E ) B ) p ) }  e.  _V )
3629, 35eqeltrd 2555 . . . 4  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  { <. f ,  p >.  |  ( f ( A ( V WalkOn  E
) B ) p  /\  f ( V SPaths  E ) p ) }  e.  _V )
3736adantr 465 . . 3  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V ) )  ->  { <. f ,  p >.  |  ( f ( A ( V WalkOn  E
) B ) p  /\  f ( V SPaths  E ) p ) }  e.  _V )
38 oveq12 6304 . . . . . . 7  |-  ( ( a  =  A  /\  b  =  B )  ->  ( a ( V WalkOn  E ) b )  =  ( A ( V WalkOn  E ) B ) )
3938breqd 4464 . . . . . 6  |-  ( ( a  =  A  /\  b  =  B )  ->  ( f ( a ( V WalkOn  E ) b ) p  <->  f ( A ( V WalkOn  E
) B ) p ) )
4039anbi1d 704 . . . . 5  |-  ( ( a  =  A  /\  b  =  B )  ->  ( ( f ( a ( V WalkOn  E
) b ) p  /\  f ( V SPaths  E ) p )  <-> 
( f ( A ( V WalkOn  E ) B ) p  /\  f ( V SPaths  E
) p ) ) )
4140opabbidv 4516 . . . 4  |-  ( ( a  =  A  /\  b  =  B )  ->  { <. f ,  p >.  |  ( f ( a ( V WalkOn  E
) b ) p  /\  f ( V SPaths  E ) p ) }  =  { <. f ,  p >.  |  ( f ( A ( V WalkOn  E ) B ) p  /\  f
( V SPaths  E )
p ) } )
42 eqid 2467 . . . 4  |-  ( a  e.  V ,  b  e.  V  |->  { <. f ,  p >.  |  ( f ( a ( V WalkOn  E ) b ) p  /\  f
( V SPaths  E )
p ) } )  =  ( a  e.  V ,  b  e.  V  |->  { <. f ,  p >.  |  (
f ( a ( V WalkOn  E ) b ) p  /\  f
( V SPaths  E )
p ) } )
4341, 42ovmpt2ga 6427 . . 3  |-  ( ( A  e.  V  /\  B  e.  V  /\  {
<. f ,  p >.  |  ( f ( A ( V WalkOn  E ) B ) p  /\  f ( V SPaths  E
) p ) }  e.  _V )  -> 
( A ( a  e.  V ,  b  e.  V  |->  { <. f ,  p >.  |  ( f ( a ( V WalkOn  E ) b ) p  /\  f
( V SPaths  E )
p ) } ) B )  =  { <. f ,  p >.  |  ( f ( A ( V WalkOn  E ) B ) p  /\  f ( V SPaths  E
) p ) } )
4425, 26, 37, 43syl3anc 1228 . 2  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V ) )  -> 
( A ( a  e.  V ,  b  e.  V  |->  { <. f ,  p >.  |  ( f ( a ( V WalkOn  E ) b ) p  /\  f
( V SPaths  E )
p ) } ) B )  =  { <. f ,  p >.  |  ( f ( A ( V WalkOn  E ) B ) p  /\  f ( V SPaths  E
) p ) } )
4523, 44eqtrd 2508 1  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V ) )  -> 
( A ( V SPathOn  E ) B )  =  { <. f ,  p >.  |  (
f ( A ( V WalkOn  E ) B ) p  /\  f
( V SPaths  E )
p ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   _Vcvv 3118   class class class wbr 4453   {copab 4510  (class class class)co 6295    |-> cmpt2 6297   Walks cwalk 24321   Trails ctrail 24322   Paths cpath 24323   SPaths cspath 24324   WalkOn cwlkon 24325   SPathOn cspthon 24328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-1o 7142  df-oadd 7146  df-er 7323  df-map 7434  df-pm 7435  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-card 8332  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-nn 10549  df-n0 10808  df-z 10877  df-uz 11095  df-fz 11685  df-fzo 11805  df-hash 12386  df-word 12523  df-wlk 24331  df-trail 24332  df-pth 24333  df-spth 24334  df-spthon 24340
This theorem is referenced by:  isspthon  24408  spthonprp  24410
  Copyright terms: Public domain W3C validator