MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setcmon Structured version   Visualization version   GIF version

Theorem setcmon 16560
Description: A monomorphism of sets is an injection. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
setcmon.c 𝐶 = (SetCat‘𝑈)
setcmon.u (𝜑𝑈𝑉)
setcmon.x (𝜑𝑋𝑈)
setcmon.y (𝜑𝑌𝑈)
setcmon.h 𝑀 = (Mono‘𝐶)
Assertion
Ref Expression
setcmon (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ 𝐹:𝑋1-1𝑌))

Proof of Theorem setcmon
Dummy variables 𝑥 𝑔 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
2 eqid 2610 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
3 eqid 2610 . . . . . 6 (comp‘𝐶) = (comp‘𝐶)
4 setcmon.h . . . . . 6 𝑀 = (Mono‘𝐶)
5 setcmon.u . . . . . . 7 (𝜑𝑈𝑉)
6 setcmon.c . . . . . . . 8 𝐶 = (SetCat‘𝑈)
76setccat 16558 . . . . . . 7 (𝑈𝑉𝐶 ∈ Cat)
85, 7syl 17 . . . . . 6 (𝜑𝐶 ∈ Cat)
9 setcmon.x . . . . . . 7 (𝜑𝑋𝑈)
106, 5setcbas 16551 . . . . . . 7 (𝜑𝑈 = (Base‘𝐶))
119, 10eleqtrd 2690 . . . . . 6 (𝜑𝑋 ∈ (Base‘𝐶))
12 setcmon.y . . . . . . 7 (𝜑𝑌𝑈)
1312, 10eleqtrd 2690 . . . . . 6 (𝜑𝑌 ∈ (Base‘𝐶))
141, 2, 3, 4, 8, 11, 13monhom 16218 . . . . 5 (𝜑 → (𝑋𝑀𝑌) ⊆ (𝑋(Hom ‘𝐶)𝑌))
1514sselda 3568 . . . 4 ((𝜑𝐹 ∈ (𝑋𝑀𝑌)) → 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
166, 5, 2, 9, 12elsetchom 16554 . . . . 5 (𝜑 → (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ↔ 𝐹:𝑋𝑌))
1716biimpa 500 . . . 4 ((𝜑𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌)) → 𝐹:𝑋𝑌)
1815, 17syldan 486 . . 3 ((𝜑𝐹 ∈ (𝑋𝑀𝑌)) → 𝐹:𝑋𝑌)
19 simprr 792 . . . . . . . . . . . 12 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝐹𝑥) = (𝐹𝑦))
2019sneqd 4137 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → {(𝐹𝑥)} = {(𝐹𝑦)})
2120xpeq2d 5063 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝑋 × {(𝐹𝑥)}) = (𝑋 × {(𝐹𝑦)}))
2218adantr 480 . . . . . . . . . . . 12 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝐹:𝑋𝑌)
23 ffn 5958 . . . . . . . . . . . 12 (𝐹:𝑋𝑌𝐹 Fn 𝑋)
2422, 23syl 17 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝐹 Fn 𝑋)
25 simprll 798 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑥𝑋)
26 fcoconst 6307 . . . . . . . . . . 11 ((𝐹 Fn 𝑋𝑥𝑋) → (𝐹 ∘ (𝑋 × {𝑥})) = (𝑋 × {(𝐹𝑥)}))
2724, 25, 26syl2anc 691 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝐹 ∘ (𝑋 × {𝑥})) = (𝑋 × {(𝐹𝑥)}))
28 simprlr 799 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑦𝑋)
29 fcoconst 6307 . . . . . . . . . . 11 ((𝐹 Fn 𝑋𝑦𝑋) → (𝐹 ∘ (𝑋 × {𝑦})) = (𝑋 × {(𝐹𝑦)}))
3024, 28, 29syl2anc 691 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝐹 ∘ (𝑋 × {𝑦})) = (𝑋 × {(𝐹𝑦)}))
3121, 27, 303eqtr4d 2654 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝐹 ∘ (𝑋 × {𝑥})) = (𝐹 ∘ (𝑋 × {𝑦})))
325ad2antrr 758 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑈𝑉)
339ad2antrr 758 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑋𝑈)
3412ad2antrr 758 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑌𝑈)
35 fconst6g 6007 . . . . . . . . . . 11 (𝑥𝑋 → (𝑋 × {𝑥}):𝑋𝑋)
3625, 35syl 17 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝑋 × {𝑥}):𝑋𝑋)
376, 32, 3, 33, 33, 34, 36, 22setcco 16556 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(𝑋 × {𝑥})) = (𝐹 ∘ (𝑋 × {𝑥})))
38 fconst6g 6007 . . . . . . . . . . 11 (𝑦𝑋 → (𝑋 × {𝑦}):𝑋𝑋)
3928, 38syl 17 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝑋 × {𝑦}):𝑋𝑋)
406, 32, 3, 33, 33, 34, 39, 22setcco 16556 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(𝑋 × {𝑦})) = (𝐹 ∘ (𝑋 × {𝑦})))
4131, 37, 403eqtr4d 2654 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(𝑋 × {𝑥})) = (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(𝑋 × {𝑦})))
428ad2antrr 758 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝐶 ∈ Cat)
4311ad2antrr 758 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑋 ∈ (Base‘𝐶))
4413ad2antrr 758 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑌 ∈ (Base‘𝐶))
45 simplr 788 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝐹 ∈ (𝑋𝑀𝑌))
466, 32, 2, 33, 33elsetchom 16554 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝑋 × {𝑥}) ∈ (𝑋(Hom ‘𝐶)𝑋) ↔ (𝑋 × {𝑥}):𝑋𝑋))
4736, 46mpbird 246 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝑋 × {𝑥}) ∈ (𝑋(Hom ‘𝐶)𝑋))
486, 32, 2, 33, 33elsetchom 16554 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝑋 × {𝑦}) ∈ (𝑋(Hom ‘𝐶)𝑋) ↔ (𝑋 × {𝑦}):𝑋𝑋))
4939, 48mpbird 246 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝑋 × {𝑦}) ∈ (𝑋(Hom ‘𝐶)𝑋))
501, 2, 3, 4, 42, 43, 44, 43, 45, 47, 49moni 16219 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(𝑋 × {𝑥})) = (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(𝑋 × {𝑦})) ↔ (𝑋 × {𝑥}) = (𝑋 × {𝑦})))
5141, 50mpbid 221 . . . . . . 7 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝑋 × {𝑥}) = (𝑋 × {𝑦}))
5251fveq1d 6105 . . . . . 6 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝑋 × {𝑥})‘𝑥) = ((𝑋 × {𝑦})‘𝑥))
53 vex 3176 . . . . . . . 8 𝑥 ∈ V
5453fvconst2 6374 . . . . . . 7 (𝑥𝑋 → ((𝑋 × {𝑥})‘𝑥) = 𝑥)
5525, 54syl 17 . . . . . 6 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝑋 × {𝑥})‘𝑥) = 𝑥)
56 vex 3176 . . . . . . . 8 𝑦 ∈ V
5756fvconst2 6374 . . . . . . 7 (𝑥𝑋 → ((𝑋 × {𝑦})‘𝑥) = 𝑦)
5825, 57syl 17 . . . . . 6 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝑋 × {𝑦})‘𝑥) = 𝑦)
5952, 55, 583eqtr3d 2652 . . . . 5 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑥 = 𝑦)
6059expr 641 . . . 4 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
6160ralrimivva 2954 . . 3 ((𝜑𝐹 ∈ (𝑋𝑀𝑌)) → ∀𝑥𝑋𝑦𝑋 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
62 dff13 6416 . . 3 (𝐹:𝑋1-1𝑌 ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
6318, 61, 62sylanbrc 695 . 2 ((𝜑𝐹 ∈ (𝑋𝑀𝑌)) → 𝐹:𝑋1-1𝑌)
64 f1f 6014 . . . 4 (𝐹:𝑋1-1𝑌𝐹:𝑋𝑌)
6516biimpar 501 . . . 4 ((𝜑𝐹:𝑋𝑌) → 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
6664, 65sylan2 490 . . 3 ((𝜑𝐹:𝑋1-1𝑌) → 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
6710adantr 480 . . . . . 6 ((𝜑𝐹:𝑋1-1𝑌) → 𝑈 = (Base‘𝐶))
6867eleq2d 2673 . . . . 5 ((𝜑𝐹:𝑋1-1𝑌) → (𝑧𝑈𝑧 ∈ (Base‘𝐶)))
695ad2antrr 758 . . . . . . . . . . 11 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝑈𝑉)
70 simprl 790 . . . . . . . . . . 11 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝑧𝑈)
719ad2antrr 758 . . . . . . . . . . 11 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝑋𝑈)
7212ad2antrr 758 . . . . . . . . . . 11 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝑌𝑈)
73 simprrl 800 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋))
746, 69, 2, 70, 71elsetchom 16554 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↔ 𝑔:𝑧𝑋))
7573, 74mpbid 221 . . . . . . . . . . 11 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝑔:𝑧𝑋)
7664ad2antlr 759 . . . . . . . . . . 11 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝐹:𝑋𝑌)
776, 69, 3, 70, 71, 72, 75, 76setcco 16556 . . . . . . . . . 10 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹𝑔))
78 simprrr 801 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → ∈ (𝑧(Hom ‘𝐶)𝑋))
796, 69, 2, 70, 71elsetchom 16554 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → ( ∈ (𝑧(Hom ‘𝐶)𝑋) ↔ :𝑧𝑋))
8078, 79mpbid 221 . . . . . . . . . . 11 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → :𝑧𝑋)
816, 69, 3, 70, 71, 72, 80, 76setcco 16556 . . . . . . . . . 10 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) = (𝐹))
8277, 81eqeq12d 2625 . . . . . . . . 9 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → ((𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) ↔ (𝐹𝑔) = (𝐹)))
83 simplr 788 . . . . . . . . . . 11 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝐹:𝑋1-1𝑌)
84 cocan1 6446 . . . . . . . . . . 11 ((𝐹:𝑋1-1𝑌𝑔:𝑧𝑋:𝑧𝑋) → ((𝐹𝑔) = (𝐹) ↔ 𝑔 = ))
8583, 75, 80, 84syl3anc 1318 . . . . . . . . . 10 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → ((𝐹𝑔) = (𝐹) ↔ 𝑔 = ))
8685biimpd 218 . . . . . . . . 9 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → ((𝐹𝑔) = (𝐹) → 𝑔 = ))
8782, 86sylbid 229 . . . . . . . 8 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → ((𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = ))
8887anassrs 678 . . . . . . 7 ((((𝜑𝐹:𝑋1-1𝑌) ∧ 𝑧𝑈) ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → ((𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = ))
8988ralrimivva 2954 . . . . . 6 (((𝜑𝐹:𝑋1-1𝑌) ∧ 𝑧𝑈) → ∀𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)∀ ∈ (𝑧(Hom ‘𝐶)𝑋)((𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = ))
9089ex 449 . . . . 5 ((𝜑𝐹:𝑋1-1𝑌) → (𝑧𝑈 → ∀𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)∀ ∈ (𝑧(Hom ‘𝐶)𝑋)((𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = )))
9168, 90sylbird 249 . . . 4 ((𝜑𝐹:𝑋1-1𝑌) → (𝑧 ∈ (Base‘𝐶) → ∀𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)∀ ∈ (𝑧(Hom ‘𝐶)𝑋)((𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = )))
9291ralrimiv 2948 . . 3 ((𝜑𝐹:𝑋1-1𝑌) → ∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)∀ ∈ (𝑧(Hom ‘𝐶)𝑋)((𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = ))
931, 2, 3, 4, 8, 11, 13ismon2 16217 . . . 4 (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ ∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)∀ ∈ (𝑧(Hom ‘𝐶)𝑋)((𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = ))))
9493adantr 480 . . 3 ((𝜑𝐹:𝑋1-1𝑌) → (𝐹 ∈ (𝑋𝑀𝑌) ↔ (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ ∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)∀ ∈ (𝑧(Hom ‘𝐶)𝑋)((𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = ))))
9566, 92, 94mpbir2and 959 . 2 ((𝜑𝐹:𝑋1-1𝑌) → 𝐹 ∈ (𝑋𝑀𝑌))
9663, 95impbida 873 1 (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ 𝐹:𝑋1-1𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  {csn 4125  cop 4131   × cxp 5036  ccom 5042   Fn wfn 5799  wf 5800  1-1wf1 5801  cfv 5804  (class class class)co 6549  Basecbs 15695  Hom chom 15779  compcco 15780  Catccat 16148  Monocmon 16211  SetCatcsetc 16548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-hom 15793  df-cco 15794  df-cat 16152  df-cid 16153  df-mon 16213  df-setc 16549
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator