MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismon2 Structured version   Visualization version   GIF version

Theorem ismon2 16217
Description: Write out the monomorphism property directly. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
ismon.b 𝐵 = (Base‘𝐶)
ismon.h 𝐻 = (Hom ‘𝐶)
ismon.o · = (comp‘𝐶)
ismon.s 𝑀 = (Mono‘𝐶)
ismon.c (𝜑𝐶 ∈ Cat)
ismon.x (𝜑𝑋𝐵)
ismon.y (𝜑𝑌𝐵)
Assertion
Ref Expression
ismon2 (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = ))))
Distinct variable groups:   𝑔,,𝑧,𝐵   𝜑,𝑔,,𝑧   𝐶,𝑔,,𝑧   𝑔,𝐻,,𝑧   · ,𝑔,,𝑧   𝑔,𝐹,,𝑧   𝑔,𝑋,,𝑧   𝑔,𝑌,,𝑧
Allowed substitution hints:   𝑀(𝑧,𝑔,)

Proof of Theorem ismon2
StepHypRef Expression
1 ismon.b . . 3 𝐵 = (Base‘𝐶)
2 ismon.h . . 3 𝐻 = (Hom ‘𝐶)
3 ismon.o . . 3 · = (comp‘𝐶)
4 ismon.s . . 3 𝑀 = (Mono‘𝐶)
5 ismon.c . . 3 (𝜑𝐶 ∈ Cat)
6 ismon.x . . 3 (𝜑𝑋𝐵)
7 ismon.y . . 3 (𝜑𝑌𝐵)
81, 2, 3, 4, 5, 6, 7ismon 16216 . 2 (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)))))
95ad2antrr 758 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋))) → 𝐶 ∈ Cat)
10 simprl 790 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋))) → 𝑧𝐵)
116ad2antrr 758 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋))) → 𝑋𝐵)
127ad2antrr 758 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋))) → 𝑌𝐵)
13 simprr 792 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋))) → 𝑔 ∈ (𝑧𝐻𝑋))
14 simplr 788 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋))) → 𝐹 ∈ (𝑋𝐻𝑌))
151, 2, 3, 9, 10, 11, 12, 13, 14catcocl 16169 . . . . . . 7 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋))) → (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) ∈ (𝑧𝐻𝑌))
1615anassrs 678 . . . . . 6 ((((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ 𝑧𝐵) ∧ 𝑔 ∈ (𝑧𝐻𝑋)) → (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) ∈ (𝑧𝐻𝑌))
1716ralrimiva 2949 . . . . 5 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ 𝑧𝐵) → ∀𝑔 ∈ (𝑧𝐻𝑋)(𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) ∈ (𝑧𝐻𝑌))
18 eqid 2610 . . . . . . . 8 (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)) = (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔))
1918fmpt 6289 . . . . . . 7 (∀𝑔 ∈ (𝑧𝐻𝑋)(𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) ∈ (𝑧𝐻𝑌) ↔ (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)):(𝑧𝐻𝑋)⟶(𝑧𝐻𝑌))
20 df-f1 5809 . . . . . . . 8 ((𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)):(𝑧𝐻𝑋)–1-1→(𝑧𝐻𝑌) ↔ ((𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)):(𝑧𝐻𝑋)⟶(𝑧𝐻𝑌) ∧ Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔))))
2120baib 942 . . . . . . 7 ((𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)):(𝑧𝐻𝑋)⟶(𝑧𝐻𝑌) → ((𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)):(𝑧𝐻𝑋)–1-1→(𝑧𝐻𝑌) ↔ Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔))))
2219, 21sylbi 206 . . . . . 6 (∀𝑔 ∈ (𝑧𝐻𝑋)(𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) ∈ (𝑧𝐻𝑌) → ((𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)):(𝑧𝐻𝑋)–1-1→(𝑧𝐻𝑌) ↔ Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔))))
23 oveq2 6557 . . . . . . . 8 (𝑔 = → (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)))
2418, 23f1mpt 6419 . . . . . . 7 ((𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)):(𝑧𝐻𝑋)–1-1→(𝑧𝐻𝑌) ↔ (∀𝑔 ∈ (𝑧𝐻𝑋)(𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) ∈ (𝑧𝐻𝑌) ∧ ∀𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = )))
2524baib 942 . . . . . 6 (∀𝑔 ∈ (𝑧𝐻𝑋)(𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) ∈ (𝑧𝐻𝑌) → ((𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)):(𝑧𝐻𝑋)–1-1→(𝑧𝐻𝑌) ↔ ∀𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = )))
2622, 25bitr3d 269 . . . . 5 (∀𝑔 ∈ (𝑧𝐻𝑋)(𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) ∈ (𝑧𝐻𝑌) → (Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)) ↔ ∀𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = )))
2717, 26syl 17 . . . 4 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ 𝑧𝐵) → (Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)) ↔ ∀𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = )))
2827ralbidva 2968 . . 3 ((𝜑𝐹 ∈ (𝑋𝐻𝑌)) → (∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)) ↔ ∀𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = )))
2928pm5.32da 671 . 2 (𝜑 → ((𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔))) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = ))))
308, 29bitrd 267 1 (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  cop 4131  cmpt 4643  ccnv 5037  Fun wfun 5798  wf 5800  1-1wf1 5801  cfv 5804  (class class class)co 6549  Basecbs 15695  Hom chom 15779  compcco 15780  Catccat 16148  Monocmon 16211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-cat 16152  df-mon 16213
This theorem is referenced by:  moni  16219  sectmon  16265  fthmon  16410  setcmon  16560
  Copyright terms: Public domain W3C validator