MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seq1st Structured version   Visualization version   GIF version

Theorem seq1st 15122
Description: A sequence whose iteration function ignores the second argument is only affected by the first point of the initial value function. (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
algrf.1 𝑍 = (ℤ𝑀)
algrf.2 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))
Assertion
Ref Expression
seq1st ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → 𝑅 = seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩}))

Proof of Theorem seq1st
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 algrf.2 . 2 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))
2 seqfn 12675 . . . 4 (𝑀 ∈ ℤ → seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})) Fn (ℤ𝑀))
32adantr 480 . . 3 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})) Fn (ℤ𝑀))
4 seqfn 12675 . . . 4 (𝑀 ∈ ℤ → seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩}) Fn (ℤ𝑀))
54adantr 480 . . 3 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩}) Fn (ℤ𝑀))
6 fveq2 6103 . . . . . . . 8 (𝑦 = 𝑀 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑀))
7 fveq2 6103 . . . . . . . 8 (𝑦 = 𝑀 → (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑀))
86, 7eqeq12d 2625 . . . . . . 7 (𝑦 = 𝑀 → ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑦) ↔ (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑀) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑀)))
98imbi2d 329 . . . . . 6 (𝑦 = 𝑀 → ((𝐴𝑉 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑦)) ↔ (𝐴𝑉 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑀) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑀))))
10 fveq2 6103 . . . . . . . 8 (𝑦 = 𝑥 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥))
11 fveq2 6103 . . . . . . . 8 (𝑦 = 𝑥 → (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥))
1210, 11eqeq12d 2625 . . . . . . 7 (𝑦 = 𝑥 → ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑦) ↔ (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥)))
1312imbi2d 329 . . . . . 6 (𝑦 = 𝑥 → ((𝐴𝑉 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑦)) ↔ (𝐴𝑉 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥))))
14 fveq2 6103 . . . . . . . 8 (𝑦 = (𝑥 + 1) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝑥 + 1)))
15 fveq2 6103 . . . . . . . 8 (𝑦 = (𝑥 + 1) → (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘(𝑥 + 1)))
1614, 15eqeq12d 2625 . . . . . . 7 (𝑦 = (𝑥 + 1) → ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑦) ↔ (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝑥 + 1)) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘(𝑥 + 1))))
1716imbi2d 329 . . . . . 6 (𝑦 = (𝑥 + 1) → ((𝐴𝑉 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑦)) ↔ (𝐴𝑉 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝑥 + 1)) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘(𝑥 + 1)))))
18 seq1 12676 . . . . . . . . 9 (𝑀 ∈ ℤ → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑀) = ((𝑍 × {𝐴})‘𝑀))
1918adantr 480 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑀) = ((𝑍 × {𝐴})‘𝑀))
20 seq1 12676 . . . . . . . . . 10 (𝑀 ∈ ℤ → (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑀) = ({⟨𝑀, 𝐴⟩}‘𝑀))
2120adantr 480 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑀) = ({⟨𝑀, 𝐴⟩}‘𝑀))
22 id 22 . . . . . . . . . . 11 (𝐴𝑉𝐴𝑉)
23 uzid 11578 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
24 algrf.1 . . . . . . . . . . . 12 𝑍 = (ℤ𝑀)
2523, 24syl6eleqr 2699 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 𝑀𝑍)
26 fvconst2g 6372 . . . . . . . . . . 11 ((𝐴𝑉𝑀𝑍) → ((𝑍 × {𝐴})‘𝑀) = 𝐴)
2722, 25, 26syl2anr 494 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → ((𝑍 × {𝐴})‘𝑀) = 𝐴)
28 fvsng 6352 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → ({⟨𝑀, 𝐴⟩}‘𝑀) = 𝐴)
2927, 28eqtr4d 2647 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → ((𝑍 × {𝐴})‘𝑀) = ({⟨𝑀, 𝐴⟩}‘𝑀))
3021, 29eqtr4d 2647 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑀) = ((𝑍 × {𝐴})‘𝑀))
3119, 30eqtr4d 2647 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑀) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑀))
3231ex 449 . . . . . 6 (𝑀 ∈ ℤ → (𝐴𝑉 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑀) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑀)))
33 fveq2 6103 . . . . . . . . 9 ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥) → (𝐹‘(seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥)) = (𝐹‘(seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥)))
34 seqp1 12678 . . . . . . . . . . . 12 (𝑥 ∈ (ℤ𝑀) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝑥 + 1)) = ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝑥 + 1))))
35 fvex 6113 . . . . . . . . . . . . 13 (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥) ∈ V
36 fvex 6113 . . . . . . . . . . . . 13 ((𝑍 × {𝐴})‘(𝑥 + 1)) ∈ V
3735, 36algrflem 7173 . . . . . . . . . . . 12 ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝑥 + 1))) = (𝐹‘(seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥))
3834, 37syl6eq 2660 . . . . . . . . . . 11 (𝑥 ∈ (ℤ𝑀) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝑥 + 1)) = (𝐹‘(seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥)))
39 seqp1 12678 . . . . . . . . . . . 12 (𝑥 ∈ (ℤ𝑀) → (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘(𝑥 + 1)) = ((seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥)(𝐹 ∘ 1st )({⟨𝑀, 𝐴⟩}‘(𝑥 + 1))))
40 fvex 6113 . . . . . . . . . . . . 13 (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥) ∈ V
41 fvex 6113 . . . . . . . . . . . . 13 ({⟨𝑀, 𝐴⟩}‘(𝑥 + 1)) ∈ V
4240, 41algrflem 7173 . . . . . . . . . . . 12 ((seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥)(𝐹 ∘ 1st )({⟨𝑀, 𝐴⟩}‘(𝑥 + 1))) = (𝐹‘(seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥))
4339, 42syl6eq 2660 . . . . . . . . . . 11 (𝑥 ∈ (ℤ𝑀) → (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘(𝑥 + 1)) = (𝐹‘(seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥)))
4438, 43eqeq12d 2625 . . . . . . . . . 10 (𝑥 ∈ (ℤ𝑀) → ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝑥 + 1)) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘(𝑥 + 1)) ↔ (𝐹‘(seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥)) = (𝐹‘(seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥))))
4544adantl 481 . . . . . . . . 9 ((𝐴𝑉𝑥 ∈ (ℤ𝑀)) → ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝑥 + 1)) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘(𝑥 + 1)) ↔ (𝐹‘(seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥)) = (𝐹‘(seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥))))
4633, 45syl5ibr 235 . . . . . . . 8 ((𝐴𝑉𝑥 ∈ (ℤ𝑀)) → ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝑥 + 1)) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘(𝑥 + 1))))
4746expcom 450 . . . . . . 7 (𝑥 ∈ (ℤ𝑀) → (𝐴𝑉 → ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝑥 + 1)) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘(𝑥 + 1)))))
4847a2d 29 . . . . . 6 (𝑥 ∈ (ℤ𝑀) → ((𝐴𝑉 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥)) → (𝐴𝑉 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝑥 + 1)) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘(𝑥 + 1)))))
499, 13, 17, 13, 32, 48uzind4 11622 . . . . 5 (𝑥 ∈ (ℤ𝑀) → (𝐴𝑉 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥)))
5049impcom 445 . . . 4 ((𝐴𝑉𝑥 ∈ (ℤ𝑀)) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥))
5150adantll 746 . . 3 (((𝑀 ∈ ℤ ∧ 𝐴𝑉) ∧ 𝑥 ∈ (ℤ𝑀)) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥))
523, 5, 51eqfnfvd 6222 . 2 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})) = seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩}))
531, 52syl5eq 2656 1 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → 𝑅 = seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  {csn 4125  cop 4131   × cxp 5036  ccom 5042   Fn wfn 5799  cfv 5804  (class class class)co 6549  1st c1st 7057  1c1 9816   + caddc 9818  cz 11254  cuz 11563  seqcseq 12663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-seq 12664
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator