Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sconpht2 Structured version   Visualization version   GIF version

Theorem sconpht2 30474
Description: Any two paths in a simply connected space with the same start and end point are path-homotopic. (Contributed by Mario Carneiro, 12-Feb-2015.)
Hypotheses
Ref Expression
sconpht2.1 (𝜑𝐽 ∈ SCon)
sconpht2.2 (𝜑𝐹 ∈ (II Cn 𝐽))
sconpht2.3 (𝜑𝐺 ∈ (II Cn 𝐽))
sconpht2.4 (𝜑 → (𝐹‘0) = (𝐺‘0))
sconpht2.5 (𝜑 → (𝐹‘1) = (𝐺‘1))
Assertion
Ref Expression
sconpht2 (𝜑𝐹( ≃ph𝐽)𝐺)

Proof of Theorem sconpht2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sconpht2.1 . . . 4 (𝜑𝐽 ∈ SCon)
2 sconpht2.2 . . . . 5 (𝜑𝐹 ∈ (II Cn 𝐽))
3 sconpht2.3 . . . . . . 7 (𝜑𝐺 ∈ (II Cn 𝐽))
4 eqid 2610 . . . . . . . 8 (𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))) = (𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))
54pcorevcl 22633 . . . . . . 7 (𝐺 ∈ (II Cn 𝐽) → ((𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))) ∈ (II Cn 𝐽) ∧ ((𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))‘0) = (𝐺‘1) ∧ ((𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))‘1) = (𝐺‘0)))
63, 5syl 17 . . . . . 6 (𝜑 → ((𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))) ∈ (II Cn 𝐽) ∧ ((𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))‘0) = (𝐺‘1) ∧ ((𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))‘1) = (𝐺‘0)))
76simp1d 1066 . . . . 5 (𝜑 → (𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))) ∈ (II Cn 𝐽))
8 sconpht2.5 . . . . . 6 (𝜑 → (𝐹‘1) = (𝐺‘1))
96simp2d 1067 . . . . . 6 (𝜑 → ((𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))‘0) = (𝐺‘1))
108, 9eqtr4d 2647 . . . . 5 (𝜑 → (𝐹‘1) = ((𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))‘0))
112, 7, 10pcocn 22625 . . . 4 (𝜑 → (𝐹(*𝑝𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))) ∈ (II Cn 𝐽))
122, 7pco0 22622 . . . . 5 (𝜑 → ((𝐹(*𝑝𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))‘0) = (𝐹‘0))
132, 7pco1 22623 . . . . . 6 (𝜑 → ((𝐹(*𝑝𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))‘1) = ((𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))‘1))
14 sconpht2.4 . . . . . . 7 (𝜑 → (𝐹‘0) = (𝐺‘0))
156simp3d 1068 . . . . . . 7 (𝜑 → ((𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))‘1) = (𝐺‘0))
1614, 15eqtr4d 2647 . . . . . 6 (𝜑 → (𝐹‘0) = ((𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))‘1))
1713, 16eqtr4d 2647 . . . . 5 (𝜑 → ((𝐹(*𝑝𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))‘1) = (𝐹‘0))
1812, 17eqtr4d 2647 . . . 4 (𝜑 → ((𝐹(*𝑝𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))‘0) = ((𝐹(*𝑝𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))‘1))
19 sconpht 30465 . . . 4 ((𝐽 ∈ SCon ∧ (𝐹(*𝑝𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥)))) ∈ (II Cn 𝐽) ∧ ((𝐹(*𝑝𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))‘0) = ((𝐹(*𝑝𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))‘1)) → (𝐹(*𝑝𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))( ≃ph𝐽)((0[,]1) × {((𝐹(*𝑝𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))‘0)}))
201, 11, 18, 19syl3anc 1318 . . 3 (𝜑 → (𝐹(*𝑝𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))( ≃ph𝐽)((0[,]1) × {((𝐹(*𝑝𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))‘0)}))
2112sneqd 4137 . . . 4 (𝜑 → {((𝐹(*𝑝𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))‘0)} = {(𝐹‘0)})
2221xpeq2d 5063 . . 3 (𝜑 → ((0[,]1) × {((𝐹(*𝑝𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))‘0)}) = ((0[,]1) × {(𝐹‘0)}))
2320, 22breqtrd 4609 . 2 (𝜑 → (𝐹(*𝑝𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))( ≃ph𝐽)((0[,]1) × {(𝐹‘0)}))
24 eqid 2610 . . 3 ((0[,]1) × {(𝐹‘0)}) = ((0[,]1) × {(𝐹‘0)})
254, 24, 2, 3, 14, 8pcophtb 22637 . 2 (𝜑 → ((𝐹(*𝑝𝐽)(𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))))( ≃ph𝐽)((0[,]1) × {(𝐹‘0)}) ↔ 𝐹( ≃ph𝐽)𝐺))
2623, 25mpbid 221 1 (𝜑𝐹( ≃ph𝐽)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1031   = wceq 1475  wcel 1977  {csn 4125   class class class wbr 4583  cmpt 4643   × cxp 5036  cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816  cmin 10145  [,]cicc 12049   Cn ccn 20838  IIcii 22486  phcphtpc 22576  *𝑝cpco 22608  SConcscon 30456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-cn 20841  df-cnp 20842  df-tx 21175  df-hmeo 21368  df-xms 21935  df-ms 21936  df-tms 21937  df-ii 22488  df-htpy 22577  df-phtpy 22578  df-phtpc 22599  df-pco 22613  df-scon 30458
This theorem is referenced by:  cvmlift3lem1  30555
  Copyright terms: Public domain W3C validator