Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pconpi1 | Structured version Visualization version GIF version |
Description: All fundamental groups in a path-connected space are isomorphic. (Contributed by Mario Carneiro, 12-Feb-2015.) |
Ref | Expression |
---|---|
pconpi1.x | ⊢ 𝑋 = ∪ 𝐽 |
pconpi1.p | ⊢ 𝑃 = (𝐽 π1 𝐴) |
pconpi1.q | ⊢ 𝑄 = (𝐽 π1 𝐵) |
pconpi1.s | ⊢ 𝑆 = (Base‘𝑃) |
pconpi1.t | ⊢ 𝑇 = (Base‘𝑄) |
Ref | Expression |
---|---|
pconpi1 | ⊢ ((𝐽 ∈ PCon ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝑃 ≃𝑔 𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pconpi1.x | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | pconcn 30460 | . 2 ⊢ ((𝐽 ∈ PCon ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵)) |
3 | eqid 2610 | . . . . 5 ⊢ (𝐽 π1 (𝑓‘0)) = (𝐽 π1 (𝑓‘0)) | |
4 | eqid 2610 | . . . . 5 ⊢ (𝐽 π1 (𝑓‘1)) = (𝐽 π1 (𝑓‘1)) | |
5 | eqid 2610 | . . . . 5 ⊢ (Base‘(𝐽 π1 (𝑓‘0))) = (Base‘(𝐽 π1 (𝑓‘0))) | |
6 | eqid 2610 | . . . . 5 ⊢ ran (ℎ ∈ ∪ (Base‘(𝐽 π1 (𝑓‘0))) ↦ 〈[ℎ]( ≃ph‘𝐽), [((𝑥 ∈ (0[,]1) ↦ (𝑓‘(1 − 𝑥)))(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝑓))]( ≃ph‘𝐽)〉) = ran (ℎ ∈ ∪ (Base‘(𝐽 π1 (𝑓‘0))) ↦ 〈[ℎ]( ≃ph‘𝐽), [((𝑥 ∈ (0[,]1) ↦ (𝑓‘(1 − 𝑥)))(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝑓))]( ≃ph‘𝐽)〉) | |
7 | simpl1 1057 | . . . . . . 7 ⊢ (((𝐽 ∈ PCon ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → 𝐽 ∈ PCon) | |
8 | pcontop 30461 | . . . . . . 7 ⊢ (𝐽 ∈ PCon → 𝐽 ∈ Top) | |
9 | 7, 8 | syl 17 | . . . . . 6 ⊢ (((𝐽 ∈ PCon ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → 𝐽 ∈ Top) |
10 | 1 | toptopon 20548 | . . . . . 6 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
11 | 9, 10 | sylib 207 | . . . . 5 ⊢ (((𝐽 ∈ PCon ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → 𝐽 ∈ (TopOn‘𝑋)) |
12 | simprl 790 | . . . . 5 ⊢ (((𝐽 ∈ PCon ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → 𝑓 ∈ (II Cn 𝐽)) | |
13 | oveq2 6557 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (1 − 𝑥) = (1 − 𝑦)) | |
14 | 13 | fveq2d 6107 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑓‘(1 − 𝑥)) = (𝑓‘(1 − 𝑦))) |
15 | 14 | cbvmptv 4678 | . . . . 5 ⊢ (𝑥 ∈ (0[,]1) ↦ (𝑓‘(1 − 𝑥))) = (𝑦 ∈ (0[,]1) ↦ (𝑓‘(1 − 𝑦))) |
16 | 3, 4, 5, 6, 11, 12, 15 | pi1xfrgim 22666 | . . . 4 ⊢ (((𝐽 ∈ PCon ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → ran (ℎ ∈ ∪ (Base‘(𝐽 π1 (𝑓‘0))) ↦ 〈[ℎ]( ≃ph‘𝐽), [((𝑥 ∈ (0[,]1) ↦ (𝑓‘(1 − 𝑥)))(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝑓))]( ≃ph‘𝐽)〉) ∈ ((𝐽 π1 (𝑓‘0)) GrpIso (𝐽 π1 (𝑓‘1)))) |
17 | simprrl 800 | . . . . . . 7 ⊢ (((𝐽 ∈ PCon ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → (𝑓‘0) = 𝐴) | |
18 | 17 | oveq2d 6565 | . . . . . 6 ⊢ (((𝐽 ∈ PCon ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → (𝐽 π1 (𝑓‘0)) = (𝐽 π1 𝐴)) |
19 | pconpi1.p | . . . . . 6 ⊢ 𝑃 = (𝐽 π1 𝐴) | |
20 | 18, 19 | syl6eqr 2662 | . . . . 5 ⊢ (((𝐽 ∈ PCon ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → (𝐽 π1 (𝑓‘0)) = 𝑃) |
21 | simprrr 801 | . . . . . . 7 ⊢ (((𝐽 ∈ PCon ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → (𝑓‘1) = 𝐵) | |
22 | 21 | oveq2d 6565 | . . . . . 6 ⊢ (((𝐽 ∈ PCon ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → (𝐽 π1 (𝑓‘1)) = (𝐽 π1 𝐵)) |
23 | pconpi1.q | . . . . . 6 ⊢ 𝑄 = (𝐽 π1 𝐵) | |
24 | 22, 23 | syl6eqr 2662 | . . . . 5 ⊢ (((𝐽 ∈ PCon ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → (𝐽 π1 (𝑓‘1)) = 𝑄) |
25 | 20, 24 | oveq12d 6567 | . . . 4 ⊢ (((𝐽 ∈ PCon ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → ((𝐽 π1 (𝑓‘0)) GrpIso (𝐽 π1 (𝑓‘1))) = (𝑃 GrpIso 𝑄)) |
26 | 16, 25 | eleqtrd 2690 | . . 3 ⊢ (((𝐽 ∈ PCon ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → ran (ℎ ∈ ∪ (Base‘(𝐽 π1 (𝑓‘0))) ↦ 〈[ℎ]( ≃ph‘𝐽), [((𝑥 ∈ (0[,]1) ↦ (𝑓‘(1 − 𝑥)))(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝑓))]( ≃ph‘𝐽)〉) ∈ (𝑃 GrpIso 𝑄)) |
27 | brgici 17535 | . . 3 ⊢ (ran (ℎ ∈ ∪ (Base‘(𝐽 π1 (𝑓‘0))) ↦ 〈[ℎ]( ≃ph‘𝐽), [((𝑥 ∈ (0[,]1) ↦ (𝑓‘(1 − 𝑥)))(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝑓))]( ≃ph‘𝐽)〉) ∈ (𝑃 GrpIso 𝑄) → 𝑃 ≃𝑔 𝑄) | |
28 | 26, 27 | syl 17 | . 2 ⊢ (((𝐽 ∈ PCon ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → 𝑃 ≃𝑔 𝑄) |
29 | 2, 28 | rexlimddv 3017 | 1 ⊢ ((𝐽 ∈ PCon ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝑃 ≃𝑔 𝑄) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 〈cop 4131 ∪ cuni 4372 class class class wbr 4583 ↦ cmpt 4643 ran crn 5039 ‘cfv 5804 (class class class)co 6549 [cec 7627 0cc0 9815 1c1 9816 − cmin 10145 [,]cicc 12049 Basecbs 15695 GrpIso cgim 17522 ≃𝑔 cgic 17523 Topctop 20517 TopOnctopon 20518 Cn ccn 20838 IIcii 22486 ≃phcphtpc 22576 *𝑝cpco 22608 π1 cpi1 22611 PConcpcon 30455 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-inf2 8421 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 ax-addf 9894 ax-mulf 9895 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-iin 4458 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-se 4998 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-isom 5813 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-of 6795 df-om 6958 df-1st 7059 df-2nd 7060 df-supp 7183 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-2o 7448 df-oadd 7451 df-er 7629 df-ec 7631 df-qs 7635 df-map 7746 df-ixp 7795 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-fsupp 8159 df-fi 8200 df-sup 8231 df-inf 8232 df-oi 8298 df-card 8648 df-cda 8873 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-5 10959 df-6 10960 df-7 10961 df-8 10962 df-9 10963 df-n0 11170 df-z 11255 df-dec 11370 df-uz 11564 df-q 11665 df-rp 11709 df-xneg 11822 df-xadd 11823 df-xmul 11824 df-ioo 12050 df-icc 12053 df-fz 12198 df-fzo 12335 df-seq 12664 df-exp 12723 df-hash 12980 df-cj 13687 df-re 13688 df-im 13689 df-sqrt 13823 df-abs 13824 df-struct 15697 df-ndx 15698 df-slot 15699 df-base 15700 df-sets 15701 df-ress 15702 df-plusg 15781 df-mulr 15782 df-starv 15783 df-sca 15784 df-vsca 15785 df-ip 15786 df-tset 15787 df-ple 15788 df-ds 15791 df-unif 15792 df-hom 15793 df-cco 15794 df-rest 15906 df-topn 15907 df-0g 15925 df-gsum 15926 df-topgen 15927 df-pt 15928 df-prds 15931 df-xrs 15985 df-qtop 15990 df-imas 15991 df-qus 15992 df-xps 15993 df-mre 16069 df-mrc 16070 df-acs 16072 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-submnd 17159 df-grp 17248 df-mulg 17364 df-ghm 17481 df-gim 17524 df-gic 17525 df-cntz 17573 df-cmn 18018 df-psmet 19559 df-xmet 19560 df-met 19561 df-bl 19562 df-mopn 19563 df-cnfld 19568 df-top 20521 df-bases 20522 df-topon 20523 df-topsp 20524 df-cld 20633 df-cn 20841 df-cnp 20842 df-tx 21175 df-hmeo 21368 df-xms 21935 df-ms 21936 df-tms 21937 df-ii 22488 df-htpy 22577 df-phtpy 22578 df-phtpc 22599 df-pco 22613 df-om1 22614 df-pi1 22616 df-pcon 30457 |
This theorem is referenced by: sconpi1 30475 |
Copyright terms: Public domain | W3C validator |