Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadcf Structured version   Visualization version   GIF version

 Description: The carry sequence is a sequence of elements of 2𝑜 encoding a "sequence of wffs". (Contributed by Mario Carneiro, 5-Sep-2016.)
Hypotheses
Ref Expression
sadval.c 𝐶 = seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
Assertion
Ref Expression
Distinct variable groups:   𝑚,𝑐,𝑛   𝐴,𝑐,𝑚   𝐵,𝑐,𝑚
Allowed substitution hints:   𝜑(𝑚,𝑛,𝑐)   𝐴(𝑛)   𝐵(𝑛)   𝐶(𝑚,𝑛,𝑐)

Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0nn0 11184 . . . . . 6 0 ∈ ℕ0
2 iftrue 4042 . . . . . . 7 (𝑛 = 0 → if(𝑛 = 0, ∅, (𝑛 − 1)) = ∅)
3 eqid 2610 . . . . . . 7 (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))
4 0ex 4718 . . . . . . 7 ∅ ∈ V
52, 3, 4fvmpt 6191 . . . . . 6 (0 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘0) = ∅)
61, 5ax-mp 5 . . . . 5 ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘0) = ∅
74prid1 4241 . . . . . 6 ∅ ∈ {∅, 1𝑜}
8 df2o3 7460 . . . . . 6 2𝑜 = {∅, 1𝑜}
97, 8eleqtrri 2687 . . . . 5 ∅ ∈ 2𝑜
106, 9eqeltri 2684 . . . 4 ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘0) ∈ 2𝑜
1110a1i 11 . . 3 (𝜑 → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘0) ∈ 2𝑜)
12 df-ov 6552 . . . . 5 (𝑥(𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅))𝑦) = ((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅))‘⟨𝑥, 𝑦⟩)
13 1on 7454 . . . . . . . . . . . 12 1𝑜 ∈ On
1413elexi 3186 . . . . . . . . . . 11 1𝑜 ∈ V
1514prid2 4242 . . . . . . . . . 10 1𝑜 ∈ {∅, 1𝑜}
1615, 8eleqtrri 2687 . . . . . . . . 9 1𝑜 ∈ 2𝑜
1716, 9keepel 4105 . . . . . . . 8 if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅) ∈ 2𝑜
1817rgen2w 2909 . . . . . . 7 𝑐 ∈ 2𝑜𝑚 ∈ ℕ0 if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅) ∈ 2𝑜
19 eqid 2610 . . . . . . . 8 (𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)) = (𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅))
2019fmpt2 7126 . . . . . . 7 (∀𝑐 ∈ 2𝑜𝑚 ∈ ℕ0 if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅) ∈ 2𝑜 ↔ (𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)):(2𝑜 × ℕ0)⟶2𝑜)
2118, 20mpbi 219 . . . . . 6 (𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)):(2𝑜 × ℕ0)⟶2𝑜
2221, 9f0cli 6278 . . . . 5 ((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅))‘⟨𝑥, 𝑦⟩) ∈ 2𝑜
2312, 22eqeltri 2684 . . . 4 (𝑥(𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅))𝑦) ∈ 2𝑜
2423a1i 11 . . 3 ((𝜑 ∧ (𝑥 ∈ 2𝑜𝑦 ∈ V)) → (𝑥(𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅))𝑦) ∈ 2𝑜)
25 nn0uz 11598 . . 3 0 = (ℤ‘0)
26 0zd 11266 . . 3 (𝜑 → 0 ∈ ℤ)
27 fvex 6113 . . . 4 ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘𝑥) ∈ V
2827a1i 11 . . 3 ((𝜑𝑥 ∈ (ℤ‘(0 + 1))) → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘𝑥) ∈ V)
2911, 24, 25, 26, 28seqf2 12682 . 2 (𝜑 → seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))):ℕ0⟶2𝑜)
30 sadval.c . . 3 𝐶 = seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
3130feq1i 5949 . 2 (𝐶:ℕ0⟶2𝑜 ↔ seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))):ℕ0⟶2𝑜)
3229, 31sylibr 223 1 (𝜑𝐶:ℕ0⟶2𝑜)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475  caddwcad 1536   ∈ wcel 1977  ∀wral 2896  Vcvv 3173   ⊆ wss 3540  ∅c0 3874  ifcif 4036  {cpr 4127  ⟨cop 4131   ↦ cmpt 4643   × cxp 5036  Oncon0 5640  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551  1𝑜c1o 7440  2𝑜c2o 7441  0cc0 9815  1c1 9816   + caddc 9818   − cmin 10145  ℕ0cn0 11169  ℤ≥cuz 11563  seqcseq 12663 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-seq 12664 This theorem is referenced by:  sadcp1  15015
 Copyright terms: Public domain W3C validator