MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadcp1 Structured version   Visualization version   GIF version

Theorem sadcp1 15015
Description: The carry sequence (which is a sequence of wffs, encoded as 1𝑜 and ) is defined recursively as the carry operation applied to the previous carry and the two current inputs. (Contributed by Mario Carneiro, 5-Sep-2016.)
Hypotheses
Ref Expression
sadval.a (𝜑𝐴 ⊆ ℕ0)
sadval.b (𝜑𝐵 ⊆ ℕ0)
sadval.c 𝐶 = seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
sadcp1.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
sadcp1 (𝜑 → (∅ ∈ (𝐶‘(𝑁 + 1)) ↔ cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁))))
Distinct variable groups:   𝑚,𝑐,𝑛   𝐴,𝑐,𝑚   𝐵,𝑐,𝑚   𝑛,𝑁
Allowed substitution hints:   𝜑(𝑚,𝑛,𝑐)   𝐴(𝑛)   𝐵(𝑛)   𝐶(𝑚,𝑛,𝑐)   𝑁(𝑚,𝑐)

Proof of Theorem sadcp1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sadcp1.n . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
2 nn0uz 11598 . . . . . . 7 0 = (ℤ‘0)
31, 2syl6eleq 2698 . . . . . 6 (𝜑𝑁 ∈ (ℤ‘0))
4 seqp1 12678 . . . . . 6 (𝑁 ∈ (ℤ‘0) → (seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑁 + 1)) = ((seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁)(𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅))((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1))))
53, 4syl 17 . . . . 5 (𝜑 → (seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑁 + 1)) = ((seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁)(𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅))((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1))))
6 sadval.c . . . . . 6 𝐶 = seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
76fveq1i 6104 . . . . 5 (𝐶‘(𝑁 + 1)) = (seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑁 + 1))
86fveq1i 6104 . . . . . 6 (𝐶𝑁) = (seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁)
98oveq1i 6559 . . . . 5 ((𝐶𝑁)(𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅))((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1))) = ((seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁)(𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅))((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1)))
105, 7, 93eqtr4g 2669 . . . 4 (𝜑 → (𝐶‘(𝑁 + 1)) = ((𝐶𝑁)(𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅))((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1))))
11 peano2nn0 11210 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
12 eqeq1 2614 . . . . . . . . 9 (𝑛 = (𝑁 + 1) → (𝑛 = 0 ↔ (𝑁 + 1) = 0))
13 oveq1 6556 . . . . . . . . 9 (𝑛 = (𝑁 + 1) → (𝑛 − 1) = ((𝑁 + 1) − 1))
1412, 13ifbieq2d 4061 . . . . . . . 8 (𝑛 = (𝑁 + 1) → if(𝑛 = 0, ∅, (𝑛 − 1)) = if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1)))
15 eqid 2610 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))
16 0ex 4718 . . . . . . . . 9 ∅ ∈ V
17 ovex 6577 . . . . . . . . 9 ((𝑁 + 1) − 1) ∈ V
1816, 17ifex 4106 . . . . . . . 8 if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1)) ∈ V
1914, 15, 18fvmpt 6191 . . . . . . 7 ((𝑁 + 1) ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1)) = if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1)))
201, 11, 193syl 18 . . . . . 6 (𝜑 → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1)) = if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1)))
21 nn0p1nn 11209 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
221, 21syl 17 . . . . . . . 8 (𝜑 → (𝑁 + 1) ∈ ℕ)
2322nnne0d 10942 . . . . . . 7 (𝜑 → (𝑁 + 1) ≠ 0)
24 ifnefalse 4048 . . . . . . 7 ((𝑁 + 1) ≠ 0 → if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1)) = ((𝑁 + 1) − 1))
2523, 24syl 17 . . . . . 6 (𝜑 → if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1)) = ((𝑁 + 1) − 1))
261nn0cnd 11230 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
27 1cnd 9935 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
2826, 27pncand 10272 . . . . . 6 (𝜑 → ((𝑁 + 1) − 1) = 𝑁)
2920, 25, 283eqtrd 2648 . . . . 5 (𝜑 → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1)) = 𝑁)
3029oveq2d 6565 . . . 4 (𝜑 → ((𝐶𝑁)(𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅))((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1))) = ((𝐶𝑁)(𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅))𝑁))
31 sadval.a . . . . . . 7 (𝜑𝐴 ⊆ ℕ0)
32 sadval.b . . . . . . 7 (𝜑𝐵 ⊆ ℕ0)
3331, 32, 6sadcf 15013 . . . . . 6 (𝜑𝐶:ℕ0⟶2𝑜)
3433, 1ffvelrnd 6268 . . . . 5 (𝜑 → (𝐶𝑁) ∈ 2𝑜)
35 simpr 476 . . . . . . . . 9 ((𝑥 = (𝐶𝑁) ∧ 𝑦 = 𝑁) → 𝑦 = 𝑁)
3635eleq1d 2672 . . . . . . . 8 ((𝑥 = (𝐶𝑁) ∧ 𝑦 = 𝑁) → (𝑦𝐴𝑁𝐴))
3735eleq1d 2672 . . . . . . . 8 ((𝑥 = (𝐶𝑁) ∧ 𝑦 = 𝑁) → (𝑦𝐵𝑁𝐵))
38 simpl 472 . . . . . . . . 9 ((𝑥 = (𝐶𝑁) ∧ 𝑦 = 𝑁) → 𝑥 = (𝐶𝑁))
3938eleq2d 2673 . . . . . . . 8 ((𝑥 = (𝐶𝑁) ∧ 𝑦 = 𝑁) → (∅ ∈ 𝑥 ↔ ∅ ∈ (𝐶𝑁)))
4036, 37, 39cadbi123d 1540 . . . . . . 7 ((𝑥 = (𝐶𝑁) ∧ 𝑦 = 𝑁) → (cadd(𝑦𝐴, 𝑦𝐵, ∅ ∈ 𝑥) ↔ cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁))))
4140ifbid 4058 . . . . . 6 ((𝑥 = (𝐶𝑁) ∧ 𝑦 = 𝑁) → if(cadd(𝑦𝐴, 𝑦𝐵, ∅ ∈ 𝑥), 1𝑜, ∅) = if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), 1𝑜, ∅))
42 biidd 251 . . . . . . . . 9 (𝑐 = 𝑥 → (𝑚𝐴𝑚𝐴))
43 biidd 251 . . . . . . . . 9 (𝑐 = 𝑥 → (𝑚𝐵𝑚𝐵))
44 eleq2 2677 . . . . . . . . 9 (𝑐 = 𝑥 → (∅ ∈ 𝑐 ↔ ∅ ∈ 𝑥))
4542, 43, 44cadbi123d 1540 . . . . . . . 8 (𝑐 = 𝑥 → (cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐) ↔ cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑥)))
4645ifbid 4058 . . . . . . 7 (𝑐 = 𝑥 → if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅) = if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑥), 1𝑜, ∅))
47 eleq1 2676 . . . . . . . . 9 (𝑚 = 𝑦 → (𝑚𝐴𝑦𝐴))
48 eleq1 2676 . . . . . . . . 9 (𝑚 = 𝑦 → (𝑚𝐵𝑦𝐵))
49 biidd 251 . . . . . . . . 9 (𝑚 = 𝑦 → (∅ ∈ 𝑥 ↔ ∅ ∈ 𝑥))
5047, 48, 49cadbi123d 1540 . . . . . . . 8 (𝑚 = 𝑦 → (cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑥) ↔ cadd(𝑦𝐴, 𝑦𝐵, ∅ ∈ 𝑥)))
5150ifbid 4058 . . . . . . 7 (𝑚 = 𝑦 → if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑥), 1𝑜, ∅) = if(cadd(𝑦𝐴, 𝑦𝐵, ∅ ∈ 𝑥), 1𝑜, ∅))
5246, 51cbvmpt2v 6633 . . . . . 6 (𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)) = (𝑥 ∈ 2𝑜, 𝑦 ∈ ℕ0 ↦ if(cadd(𝑦𝐴, 𝑦𝐵, ∅ ∈ 𝑥), 1𝑜, ∅))
53 1on 7454 . . . . . . . 8 1𝑜 ∈ On
5453elexi 3186 . . . . . . 7 1𝑜 ∈ V
5554, 16ifex 4106 . . . . . 6 if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), 1𝑜, ∅) ∈ V
5641, 52, 55ovmpt2a 6689 . . . . 5 (((𝐶𝑁) ∈ 2𝑜𝑁 ∈ ℕ0) → ((𝐶𝑁)(𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅))𝑁) = if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), 1𝑜, ∅))
5734, 1, 56syl2anc 691 . . . 4 (𝜑 → ((𝐶𝑁)(𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅))𝑁) = if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), 1𝑜, ∅))
5810, 30, 573eqtrd 2648 . . 3 (𝜑 → (𝐶‘(𝑁 + 1)) = if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), 1𝑜, ∅))
5958eleq2d 2673 . 2 (𝜑 → (∅ ∈ (𝐶‘(𝑁 + 1)) ↔ ∅ ∈ if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), 1𝑜, ∅)))
60 noel 3878 . . . . 5 ¬ ∅ ∈ ∅
61 iffalse 4045 . . . . . 6 (¬ cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)) → if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), 1𝑜, ∅) = ∅)
6261eleq2d 2673 . . . . 5 (¬ cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)) → (∅ ∈ if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), 1𝑜, ∅) ↔ ∅ ∈ ∅))
6360, 62mtbiri 316 . . . 4 (¬ cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)) → ¬ ∅ ∈ if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), 1𝑜, ∅))
6463con4i 112 . . 3 (∅ ∈ if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), 1𝑜, ∅) → cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)))
65 0lt1o 7471 . . . 4 ∅ ∈ 1𝑜
66 iftrue 4042 . . . 4 (cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)) → if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), 1𝑜, ∅) = 1𝑜)
6765, 66syl5eleqr 2695 . . 3 (cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)) → ∅ ∈ if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), 1𝑜, ∅))
6864, 67impbii 198 . 2 (∅ ∈ if(cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)), 1𝑜, ∅) ↔ cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)))
6959, 68syl6bb 275 1 (𝜑 → (∅ ∈ (𝐶‘(𝑁 + 1)) ↔ cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  caddwcad 1536  wcel 1977  wne 2780  wss 3540  c0 3874  ifcif 4036  cmpt 4643  Oncon0 5640  cfv 5804  (class class class)co 6549  cmpt2 6551  1𝑜c1o 7440  2𝑜c2o 7441  0cc0 9815  1c1 9816   + caddc 9818  cmin 10145  cn 10897  0cn0 11169  cuz 11563  seqcseq 12663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-xor 1457  df-tru 1478  df-cad 1537  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-seq 12664
This theorem is referenced by:  sadcaddlem  15017  sadadd2lem  15019  saddisjlem  15024
  Copyright terms: Public domain W3C validator