MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadcf Structured version   Unicode version

Theorem sadcf 13762
Description: The carry sequence is a sequence of elements of  2o encoding a "sequence of wffs". (Contributed by Mario Carneiro, 5-Sep-2016.)
Hypotheses
Ref Expression
sadval.a  |-  ( ph  ->  A  C_  NN0 )
sadval.b  |-  ( ph  ->  B  C_  NN0 )
sadval.c  |-  C  =  seq 0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )
Assertion
Ref Expression
sadcf  |-  ( ph  ->  C : NN0 --> 2o )
Distinct variable groups:    m, c, n    A, c, m    B, c, m
Allowed substitution hints:    ph( m, n, c)    A( n)    B( n)    C( m, n, c)

Proof of Theorem sadcf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0nn0 10700 . . . . . 6  |-  0  e.  NN0
2 iftrue 3900 . . . . . . 7  |-  ( n  =  0  ->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) )  =  (/) )
3 eqid 2452 . . . . . . 7  |-  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) )  =  ( n  e. 
NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) )
4 0ex 4525 . . . . . . 7  |-  (/)  e.  _V
52, 3, 4fvmpt 5878 . . . . . 6  |-  ( 0  e.  NN0  ->  ( ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) `
 0 )  =  (/) )
61, 5ax-mp 5 . . . . 5  |-  ( ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) `
 0 )  =  (/)
74prid1 4086 . . . . . 6  |-  (/)  e.  { (/)
,  1o }
8 df2o3 7038 . . . . . 6  |-  2o  =  { (/) ,  1o }
97, 8eleqtrri 2539 . . . . 5  |-  (/)  e.  2o
106, 9eqeltri 2536 . . . 4  |-  ( ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) `
 0 )  e.  2o
1110a1i 11 . . 3  |-  ( ph  ->  ( ( n  e. 
NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ` 
0 )  e.  2o )
12 df-ov 6198 . . . . 5  |-  ( x ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) y )  =  ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/) 
e.  c ) ,  1o ,  (/) ) ) `
 <. x ,  y
>. )
13 1on 7032 . . . . . . . . . . . 12  |-  1o  e.  On
1413elexi 3082 . . . . . . . . . . 11  |-  1o  e.  _V
1514prid2 4087 . . . . . . . . . 10  |-  1o  e.  {
(/) ,  1o }
1615, 8eleqtrri 2539 . . . . . . . . 9  |-  1o  e.  2o
1716, 9keepel 3960 . . . . . . . 8  |-  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) )  e.  2o
1817rgen2w 2896 . . . . . . 7  |-  A. c  e.  2o  A. m  e. 
NN0  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) )  e.  2o
19 eqid 2452 . . . . . . . 8  |-  ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/) 
e.  c ) ,  1o ,  (/) ) )  =  ( c  e.  2o ,  m  e. 
NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/) 
e.  c ) ,  1o ,  (/) ) )
2019fmpt2 6746 . . . . . . 7  |-  ( A. c  e.  2o  A. m  e.  NN0  if (cadd ( m  e.  A ,  m  e.  B ,  (/) 
e.  c ) ,  1o ,  (/) )  e.  2o  <->  ( c  e.  2o ,  m  e. 
NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/) 
e.  c ) ,  1o ,  (/) ) ) : ( 2o  X.  NN0 ) --> 2o )
2118, 20mpbi 208 . . . . . 6  |-  ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/) 
e.  c ) ,  1o ,  (/) ) ) : ( 2o  X.  NN0 ) --> 2o
2221, 9f0cli 5958 . . . . 5  |-  ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) `  <. x ,  y >. )  e.  2o
2312, 22eqeltri 2536 . . . 4  |-  ( x ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) y )  e.  2o
2423a1i 11 . . 3  |-  ( (
ph  /\  ( x  e.  2o  /\  y  e. 
_V ) )  -> 
( x ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/) 
e.  c ) ,  1o ,  (/) ) ) y )  e.  2o )
25 nn0uz 11001 . . 3  |-  NN0  =  ( ZZ>= `  0 )
26 0zd 10764 . . 3  |-  ( ph  ->  0  e.  ZZ )
27 fvex 5804 . . . 4  |-  ( ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) `
 x )  e. 
_V
2827a1i 11 . . 3  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( 0  +  1 ) ) )  ->  ( (
n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) `
 x )  e. 
_V )
2911, 24, 25, 26, 28seqf2 11937 . 2  |-  ( ph  ->  seq 0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) ) : NN0 --> 2o )
30 sadval.c . . 3  |-  C  =  seq 0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )
3130feq1i 5654 . 2  |-  ( C : NN0 --> 2o  <->  seq 0
( ( c  e.  2o ,  m  e. 
NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/) 
e.  c ) ,  1o ,  (/) ) ) ,  ( n  e. 
NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) : NN0 --> 2o )
3229, 31sylibr 212 1  |-  ( ph  ->  C : NN0 --> 2o )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370  caddwcad 1421    e. wcel 1758   A.wral 2796   _Vcvv 3072    C_ wss 3431   (/)c0 3740   ifcif 3894   {cpr 3982   <.cop 3986    |-> cmpt 4453   Oncon0 4822    X. cxp 4941   -->wf 5517   ` cfv 5521  (class class class)co 6195    |-> cmpt2 6197   1oc1o 7018   2oc2o 7019   0cc0 9388   1c1 9389    + caddc 9391    - cmin 9701   NN0cn0 10685   ZZ>=cuz 10967    seqcseq 11918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431  ax-sep 4516  ax-nul 4524  ax-pow 4573  ax-pr 4634  ax-un 6477  ax-cnex 9444  ax-resscn 9445  ax-1cn 9446  ax-icn 9447  ax-addcl 9448  ax-addrcl 9449  ax-mulcl 9450  ax-mulrcl 9451  ax-mulcom 9452  ax-addass 9453  ax-mulass 9454  ax-distr 9455  ax-i2m1 9456  ax-1ne0 9457  ax-1rid 9458  ax-rnegex 9459  ax-rrecex 9460  ax-cnre 9461  ax-pre-lttri 9462  ax-pre-lttrn 9463  ax-pre-ltadd 9464  ax-pre-mulgt0 9465
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2265  df-mo 2266  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-ne 2647  df-nel 2648  df-ral 2801  df-rex 2802  df-reu 2803  df-rab 2805  df-v 3074  df-sbc 3289  df-csb 3391  df-dif 3434  df-un 3436  df-in 3438  df-ss 3445  df-pss 3447  df-nul 3741  df-if 3895  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4195  df-iun 4276  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4489  df-eprel 4735  df-id 4739  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-ord 4825  df-on 4826  df-lim 4827  df-suc 4828  df-xp 4949  df-rel 4950  df-cnv 4951  df-co 4952  df-dm 4953  df-rn 4954  df-res 4955  df-ima 4956  df-iota 5484  df-fun 5523  df-fn 5524  df-f 5525  df-f1 5526  df-fo 5527  df-f1o 5528  df-fv 5529  df-riota 6156  df-ov 6198  df-oprab 6199  df-mpt2 6200  df-om 6582  df-1st 6682  df-2nd 6683  df-recs 6937  df-rdg 6971  df-1o 7025  df-2o 7026  df-er 7206  df-en 7416  df-dom 7417  df-sdom 7418  df-pnf 9526  df-mnf 9527  df-xr 9528  df-ltxr 9529  df-le 9530  df-sub 9703  df-neg 9704  df-nn 10429  df-n0 10686  df-z 10753  df-uz 10968  df-fz 11550  df-seq 11919
This theorem is referenced by:  sadcp1  13764
  Copyright terms: Public domain W3C validator