MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpexp Structured version   Visualization version   GIF version

Theorem rpexp 15270
Description: If two numbers 𝐴 and 𝐵 are relatively prime, then they are still relatively prime if raised to a power. (Contributed by Mario Carneiro, 24-Feb-2014.)
Assertion
Ref Expression
rpexp ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1))

Proof of Theorem rpexp
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 0exp 12757 . . . . . 6 (𝑁 ∈ ℕ → (0↑𝑁) = 0)
21oveq1d 6564 . . . . 5 (𝑁 ∈ ℕ → ((0↑𝑁) gcd 0) = (0 gcd 0))
32eqeq1d 2612 . . . 4 (𝑁 ∈ ℕ → (((0↑𝑁) gcd 0) = 1 ↔ (0 gcd 0) = 1))
4 oveq1 6556 . . . . . . 7 (𝐴 = 0 → (𝐴𝑁) = (0↑𝑁))
5 oveq12 6558 . . . . . . 7 (((𝐴𝑁) = (0↑𝑁) ∧ 𝐵 = 0) → ((𝐴𝑁) gcd 𝐵) = ((0↑𝑁) gcd 0))
64, 5sylan 487 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 = 0) → ((𝐴𝑁) gcd 𝐵) = ((0↑𝑁) gcd 0))
76eqeq1d 2612 . . . . 5 ((𝐴 = 0 ∧ 𝐵 = 0) → (((𝐴𝑁) gcd 𝐵) = 1 ↔ ((0↑𝑁) gcd 0) = 1))
8 oveq12 6558 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴 gcd 𝐵) = (0 gcd 0))
98eqeq1d 2612 . . . . 5 ((𝐴 = 0 ∧ 𝐵 = 0) → ((𝐴 gcd 𝐵) = 1 ↔ (0 gcd 0) = 1))
107, 9bibi12d 334 . . . 4 ((𝐴 = 0 ∧ 𝐵 = 0) → ((((𝐴𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1) ↔ (((0↑𝑁) gcd 0) = 1 ↔ (0 gcd 0) = 1)))
113, 10syl5ibrcom 236 . . 3 (𝑁 ∈ ℕ → ((𝐴 = 0 ∧ 𝐵 = 0) → (((𝐴𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1)))
12113ad2ant3 1077 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 = 0 ∧ 𝐵 = 0) → (((𝐴𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1)))
13 exprmfct 15254 . . . . . . 7 (((𝐴𝑁) gcd 𝐵) ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ ((𝐴𝑁) gcd 𝐵))
14 simpl1 1057 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → 𝐴 ∈ ℤ)
15 simpl3 1059 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → 𝑁 ∈ ℕ)
1615nnnn0d 11228 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → 𝑁 ∈ ℕ0)
17 zexpcl 12737 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℤ)
1814, 16, 17syl2anc 691 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴𝑁) ∈ ℤ)
1918adantr 480 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝐴𝑁) ∈ ℤ)
20 simpl2 1058 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → 𝐵 ∈ ℤ)
2120adantr 480 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → 𝐵 ∈ ℤ)
22 gcddvds 15063 . . . . . . . . . . . . . . 15 (((𝐴𝑁) ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴𝑁) gcd 𝐵) ∥ (𝐴𝑁) ∧ ((𝐴𝑁) gcd 𝐵) ∥ 𝐵))
2319, 21, 22syl2anc 691 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (((𝐴𝑁) gcd 𝐵) ∥ (𝐴𝑁) ∧ ((𝐴𝑁) gcd 𝐵) ∥ 𝐵))
2423simpld 474 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝐴𝑁) gcd 𝐵) ∥ (𝐴𝑁))
25 prmz 15227 . . . . . . . . . . . . . . 15 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
2625adantl 481 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ)
27 simpr 476 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
2814zcnd 11359 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → 𝐴 ∈ ℂ)
29 expeq0 12752 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) = 0 ↔ 𝐴 = 0))
3028, 15, 29syl2anc 691 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴𝑁) = 0 ↔ 𝐴 = 0))
3130anbi1d 737 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (((𝐴𝑁) = 0 ∧ 𝐵 = 0) ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
3227, 31mtbird 314 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ¬ ((𝐴𝑁) = 0 ∧ 𝐵 = 0))
33 gcdn0cl 15062 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑁) ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ ((𝐴𝑁) = 0 ∧ 𝐵 = 0)) → ((𝐴𝑁) gcd 𝐵) ∈ ℕ)
3418, 20, 32, 33syl21anc 1317 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴𝑁) gcd 𝐵) ∈ ℕ)
3534nnzd 11357 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴𝑁) gcd 𝐵) ∈ ℤ)
3635adantr 480 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝐴𝑁) gcd 𝐵) ∈ ℤ)
37 dvdstr 14856 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℤ ∧ ((𝐴𝑁) gcd 𝐵) ∈ ℤ ∧ (𝐴𝑁) ∈ ℤ) → ((𝑝 ∥ ((𝐴𝑁) gcd 𝐵) ∧ ((𝐴𝑁) gcd 𝐵) ∥ (𝐴𝑁)) → 𝑝 ∥ (𝐴𝑁)))
3826, 36, 19, 37syl3anc 1318 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ∥ ((𝐴𝑁) gcd 𝐵) ∧ ((𝐴𝑁) gcd 𝐵) ∥ (𝐴𝑁)) → 𝑝 ∥ (𝐴𝑁)))
3924, 38mpan2d 706 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ ((𝐴𝑁) gcd 𝐵) → 𝑝 ∥ (𝐴𝑁)))
40 simpr 476 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
41 simpll1 1093 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℤ)
4215adantr 480 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → 𝑁 ∈ ℕ)
43 prmdvdsexp 15265 . . . . . . . . . . . . 13 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑝 ∥ (𝐴𝑁) ↔ 𝑝𝐴))
4440, 41, 42, 43syl3anc 1318 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝐴𝑁) ↔ 𝑝𝐴))
4539, 44sylibd 228 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ ((𝐴𝑁) gcd 𝐵) → 𝑝𝐴))
4623simprd 478 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝐴𝑁) gcd 𝐵) ∥ 𝐵)
47 dvdstr 14856 . . . . . . . . . . . . 13 ((𝑝 ∈ ℤ ∧ ((𝐴𝑁) gcd 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑝 ∥ ((𝐴𝑁) gcd 𝐵) ∧ ((𝐴𝑁) gcd 𝐵) ∥ 𝐵) → 𝑝𝐵))
4826, 36, 21, 47syl3anc 1318 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ∥ ((𝐴𝑁) gcd 𝐵) ∧ ((𝐴𝑁) gcd 𝐵) ∥ 𝐵) → 𝑝𝐵))
4946, 48mpan2d 706 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ ((𝐴𝑁) gcd 𝐵) → 𝑝𝐵))
5045, 49jcad 554 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ ((𝐴𝑁) gcd 𝐵) → (𝑝𝐴𝑝𝐵)))
51 dvdsgcd 15099 . . . . . . . . . . 11 ((𝑝 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑝𝐴𝑝𝐵) → 𝑝 ∥ (𝐴 gcd 𝐵)))
5226, 41, 21, 51syl3anc 1318 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝𝐴𝑝𝐵) → 𝑝 ∥ (𝐴 gcd 𝐵)))
53 nprmdvds1 15256 . . . . . . . . . . . . 13 (𝑝 ∈ ℙ → ¬ 𝑝 ∥ 1)
54 breq2 4587 . . . . . . . . . . . . . 14 ((𝐴 gcd 𝐵) = 1 → (𝑝 ∥ (𝐴 gcd 𝐵) ↔ 𝑝 ∥ 1))
5554notbid 307 . . . . . . . . . . . . 13 ((𝐴 gcd 𝐵) = 1 → (¬ 𝑝 ∥ (𝐴 gcd 𝐵) ↔ ¬ 𝑝 ∥ 1))
5653, 55syl5ibrcom 236 . . . . . . . . . . . 12 (𝑝 ∈ ℙ → ((𝐴 gcd 𝐵) = 1 → ¬ 𝑝 ∥ (𝐴 gcd 𝐵)))
5756necon2ad 2797 . . . . . . . . . . 11 (𝑝 ∈ ℙ → (𝑝 ∥ (𝐴 gcd 𝐵) → (𝐴 gcd 𝐵) ≠ 1))
5857adantl 481 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝐴 gcd 𝐵) → (𝐴 gcd 𝐵) ≠ 1))
5950, 52, 583syld 58 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ ((𝐴𝑁) gcd 𝐵) → (𝐴 gcd 𝐵) ≠ 1))
6059rexlimdva 3013 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (∃𝑝 ∈ ℙ 𝑝 ∥ ((𝐴𝑁) gcd 𝐵) → (𝐴 gcd 𝐵) ≠ 1))
61 gcdn0cl 15062 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ ℕ)
62613adantl3 1212 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ ℕ)
63 eluz2b3 11638 . . . . . . . . . 10 ((𝐴 gcd 𝐵) ∈ (ℤ‘2) ↔ ((𝐴 gcd 𝐵) ∈ ℕ ∧ (𝐴 gcd 𝐵) ≠ 1))
6463baib 942 . . . . . . . . 9 ((𝐴 gcd 𝐵) ∈ ℕ → ((𝐴 gcd 𝐵) ∈ (ℤ‘2) ↔ (𝐴 gcd 𝐵) ≠ 1))
6562, 64syl 17 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴 gcd 𝐵) ∈ (ℤ‘2) ↔ (𝐴 gcd 𝐵) ≠ 1))
6660, 65sylibrd 248 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (∃𝑝 ∈ ℙ 𝑝 ∥ ((𝐴𝑁) gcd 𝐵) → (𝐴 gcd 𝐵) ∈ (ℤ‘2)))
6713, 66syl5 33 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (((𝐴𝑁) gcd 𝐵) ∈ (ℤ‘2) → (𝐴 gcd 𝐵) ∈ (ℤ‘2)))
68 exprmfct 15254 . . . . . . 7 ((𝐴 gcd 𝐵) ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝐴 gcd 𝐵))
69 gcddvds 15063 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
7041, 21, 69syl2anc 691 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
7170simpld 474 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝐴 gcd 𝐵) ∥ 𝐴)
72 iddvdsexp 14843 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐴 ∥ (𝐴𝑁))
7341, 42, 72syl2anc 691 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → 𝐴 ∥ (𝐴𝑁))
7462nnzd 11357 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ ℤ)
7574adantr 480 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝐴 gcd 𝐵) ∈ ℤ)
76 dvdstr 14856 . . . . . . . . . . . . . 14 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐴𝑁) ∈ ℤ) → (((𝐴 gcd 𝐵) ∥ 𝐴𝐴 ∥ (𝐴𝑁)) → (𝐴 gcd 𝐵) ∥ (𝐴𝑁)))
7775, 41, 19, 76syl3anc 1318 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (((𝐴 gcd 𝐵) ∥ 𝐴𝐴 ∥ (𝐴𝑁)) → (𝐴 gcd 𝐵) ∥ (𝐴𝑁)))
7871, 73, 77mp2and 711 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝐴 gcd 𝐵) ∥ (𝐴𝑁))
79 dvdstr 14856 . . . . . . . . . . . . 13 ((𝑝 ∈ ℤ ∧ (𝐴 gcd 𝐵) ∈ ℤ ∧ (𝐴𝑁) ∈ ℤ) → ((𝑝 ∥ (𝐴 gcd 𝐵) ∧ (𝐴 gcd 𝐵) ∥ (𝐴𝑁)) → 𝑝 ∥ (𝐴𝑁)))
8026, 75, 19, 79syl3anc 1318 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ∥ (𝐴 gcd 𝐵) ∧ (𝐴 gcd 𝐵) ∥ (𝐴𝑁)) → 𝑝 ∥ (𝐴𝑁)))
8178, 80mpan2d 706 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝐴 gcd 𝐵) → 𝑝 ∥ (𝐴𝑁)))
8270simprd 478 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝐴 gcd 𝐵) ∥ 𝐵)
83 dvdstr 14856 . . . . . . . . . . . . 13 ((𝑝 ∈ ℤ ∧ (𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑝 ∥ (𝐴 gcd 𝐵) ∧ (𝐴 gcd 𝐵) ∥ 𝐵) → 𝑝𝐵))
8426, 75, 21, 83syl3anc 1318 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ∥ (𝐴 gcd 𝐵) ∧ (𝐴 gcd 𝐵) ∥ 𝐵) → 𝑝𝐵))
8582, 84mpan2d 706 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝐴 gcd 𝐵) → 𝑝𝐵))
8681, 85jcad 554 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝐴 gcd 𝐵) → (𝑝 ∥ (𝐴𝑁) ∧ 𝑝𝐵)))
87 dvdsgcd 15099 . . . . . . . . . . 11 ((𝑝 ∈ ℤ ∧ (𝐴𝑁) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑝 ∥ (𝐴𝑁) ∧ 𝑝𝐵) → 𝑝 ∥ ((𝐴𝑁) gcd 𝐵)))
8826, 19, 21, 87syl3anc 1318 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ∥ (𝐴𝑁) ∧ 𝑝𝐵) → 𝑝 ∥ ((𝐴𝑁) gcd 𝐵)))
89 breq2 4587 . . . . . . . . . . . . . 14 (((𝐴𝑁) gcd 𝐵) = 1 → (𝑝 ∥ ((𝐴𝑁) gcd 𝐵) ↔ 𝑝 ∥ 1))
9089notbid 307 . . . . . . . . . . . . 13 (((𝐴𝑁) gcd 𝐵) = 1 → (¬ 𝑝 ∥ ((𝐴𝑁) gcd 𝐵) ↔ ¬ 𝑝 ∥ 1))
9153, 90syl5ibrcom 236 . . . . . . . . . . . 12 (𝑝 ∈ ℙ → (((𝐴𝑁) gcd 𝐵) = 1 → ¬ 𝑝 ∥ ((𝐴𝑁) gcd 𝐵)))
9291necon2ad 2797 . . . . . . . . . . 11 (𝑝 ∈ ℙ → (𝑝 ∥ ((𝐴𝑁) gcd 𝐵) → ((𝐴𝑁) gcd 𝐵) ≠ 1))
9392adantl 481 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ ((𝐴𝑁) gcd 𝐵) → ((𝐴𝑁) gcd 𝐵) ≠ 1))
9486, 88, 933syld 58 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝐴 gcd 𝐵) → ((𝐴𝑁) gcd 𝐵) ≠ 1))
9594rexlimdva 3013 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (∃𝑝 ∈ ℙ 𝑝 ∥ (𝐴 gcd 𝐵) → ((𝐴𝑁) gcd 𝐵) ≠ 1))
96 eluz2b3 11638 . . . . . . . . . 10 (((𝐴𝑁) gcd 𝐵) ∈ (ℤ‘2) ↔ (((𝐴𝑁) gcd 𝐵) ∈ ℕ ∧ ((𝐴𝑁) gcd 𝐵) ≠ 1))
9796baib 942 . . . . . . . . 9 (((𝐴𝑁) gcd 𝐵) ∈ ℕ → (((𝐴𝑁) gcd 𝐵) ∈ (ℤ‘2) ↔ ((𝐴𝑁) gcd 𝐵) ≠ 1))
9834, 97syl 17 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (((𝐴𝑁) gcd 𝐵) ∈ (ℤ‘2) ↔ ((𝐴𝑁) gcd 𝐵) ≠ 1))
9995, 98sylibrd 248 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (∃𝑝 ∈ ℙ 𝑝 ∥ (𝐴 gcd 𝐵) → ((𝐴𝑁) gcd 𝐵) ∈ (ℤ‘2)))
10068, 99syl5 33 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴 gcd 𝐵) ∈ (ℤ‘2) → ((𝐴𝑁) gcd 𝐵) ∈ (ℤ‘2)))
10167, 100impbid 201 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (((𝐴𝑁) gcd 𝐵) ∈ (ℤ‘2) ↔ (𝐴 gcd 𝐵) ∈ (ℤ‘2)))
102101, 98, 653bitr3d 297 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (((𝐴𝑁) gcd 𝐵) ≠ 1 ↔ (𝐴 gcd 𝐵) ≠ 1))
103102necon4bid 2827 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (((𝐴𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1))
104103ex 449 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (¬ (𝐴 = 0 ∧ 𝐵 = 0) → (((𝐴𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1)))
10512, 104pm2.61d 169 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wrex 2897   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815  1c1 9816  cn 10897  2c2 10947  0cn0 11169  cz 11254  cuz 11563  cexp 12722  cdvds 14821   gcd cgcd 15054  cprime 15223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-gcd 15055  df-prm 15224
This theorem is referenced by:  rpexp1i  15271  phiprmpw  15319  pockthlem  15447
  Copyright terms: Public domain W3C validator